БАРЬЕРНЫЕ СВОЙСТВА КОЖИ И БАЗОВЫЙ УХОД: ИННОВАЦИИ В ТЕОРИИ И ПРАКТИКЕ

Е.Р. АРАВИЙСКАЯ, Е.В. СОКОЛОВСКИЙ

Skin barrier properties and basic care: innovations in theory and practice E.R. ARAVIYSKAYA. E.V. SOKOLOVSKY

Об авторах:

E.Р. Аравийская — профессор кафедры дерматовенерологии СПбМУ им. акад. И.П. Павлова, д.м.н. E.B. Соколовский — заведующий кафедрой дерматовенерологии СПбМУ им. акад. И.П. Павлова, профессор, д.м.н.

Представлены данные о барьерных свойствах кожи и базовом уходе за ней, в том числе с применением косметических средств «Физиогель».

Ключевые слова: барьерные свойства кожи, базовый уход, физиогель.

The authors present data on skin barrier properties and basic care including care with the usage of Physiogel as a cosmetic product.

Key words: skin barrier properties, basic care, Physiogel.

В последние годы в дерматологии и косметологии большое значение придается барьерным свойствам кожи, а также базовому уходу как за пораженной, так и за здоровой кожей. Это связано, с одной стороны, со стремительным развитием науки. С другой стороны, повышенный интерес к данной проблематике обусловлен постоянным появлением на рынке новых очищающих и увлажняющих средств. В настоящем обзоре освещаются представления о барьерных свойствах кожи, основанные на последних научных данных, сведения об их нарушении и принципах коррекции при различных состояниях.

Современные представления о барьерных свойствах кожи

Кожа — особый орган, выполняющий множество функций (защитная, рецепторная, обменная и др.). Одной из значимых является функция барьера. Именно кожа обеспечивает многоступенчатую систему защиты организма от обезвоживания. К настоящему времени накоплены важные сведения о барьерных свойствах кожи и структурах, их обеспечивающих [4, 5, 8].

Существенную роль в формировании барьерных свойств кожи играют роговой слой и его состояние. С этой точки зрения особую значимость имеют следующие ключевые процессы: кератинизация, синтез высокоспециализированных межклеточных

липидов, образование натурального увлажняющего фактора, десквамация [10].

Адекватная кератинизация, или формирование роговых чешуек из наиболее зрелых кератиноцитов, важна для поддержания гомеостаза. Известно, что в норме в клетках эпителия процесс кератинизации регулируется особым белком, филаггрином. Филаггрин способствует агрегации отдельных разрозненных филаментов, составляющих цитоскелет, в единый комплекс (от англ. fillaggrin, filament aggregating protein — протеин, способствующий агрегации филаментов). Результатом этого является формирование постклеточных структур, не имеющих органелл, богатых белком, и носящих название корнеоцитов. Роговой слой не случайно называют слоем «мертвых клеток», так как они не принимают участия в синтезе новых белков и не реагируют на различные сигнальные молекулы [2, 7]. Корнеоциты имеют форму шестиугольников, они плотно прилегают друг к другу и соединены корнеосомами. Такая компактная укладка обеспечивает механическую прочность рогового слоя. Детальное изучение строения рогового слоя позволило сравнить его с кирпичной стеной (brick and mortar по Р. Elias, 1981), в которой роль кирпичей выполняют кератиноциты, а роль цемента — высокоспециализированные межклеточные липиды [19, 21].

Барьерные свойства рогового слоя обеспечиваются также особой структурой — так называемым «конвертом» ороговевших клеток («cornified cell envelope»). Этот конверт окружает кератиноциты нерастворимым белковым слоем, толщина которого составляет 10 нм. В его состав входят такие протеины, как лорикрин, инволюкрин, полипептиды, богатые

пролином, десмоплакин и периплакин. Дефекты в составе «конверта», а также нарушения барьерных свойств кожи регистрируют при некоторых генодерматозах, ассоциированных с нарушением кератинизации, в частности при ламеллярном ихтиозе и синдроме Vohwinkel [7, 10].

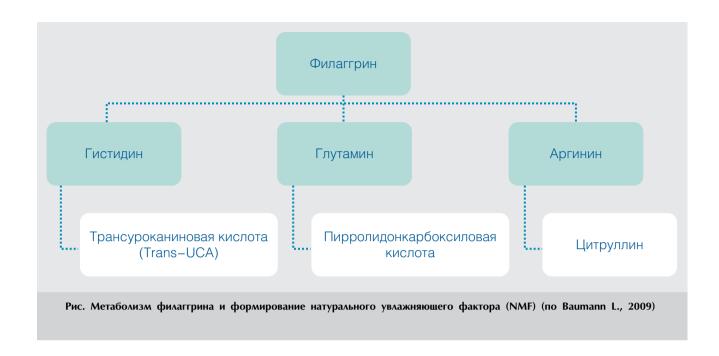
Синтез высокоспециализированных межклеточных липидов осуществляется в особых секреторных органеллах зернистых кератиноцитов — ламеллярных тельцах [2, 4]. К ним относят три основных класса: керамиды, холестерол и жирные кислоты. Небольшую долю (до 15%) составляют эфиры холестерола и триглицериды.

Керамиды составляют в среднем 50% от всех липидов рогового слоя [4]. К настоящему времени идентифицировано 9 классов свободных керамидов и 2 класса керамидов, которые ковалентно связаны с поверхностью корнеоцитов [6, 7].

Холестерол составляет 25% от всех липидов рогового слоя. Он может абсорбироваться базальными кератиноцитами из сосудов микроциркуляторного русла, но бо́льшая часть синтезируется в кератиноцитах из ацетата холестерола. Известно, что синтез холестерола усиливается при нарушении барьерных свойств кожи [10, 12].

Доля жирных кислот в липидах рогового слоя составляет около 15%. В коже находятся свободные жирные кислоты (например, пальмитиновая, стеариновая, олеиновая, линоленовая), а также жирные кислоты, связанные с триглицеридами, керамидами, гликосилкерамидами и фосфолипидами. Их метаболизм регулируется рядом энзимов (ацетил-кофермент А-кокарбоксилаза, синтетаза жирных кислот и др.) [6, 10, 18]. Нарушение барьерных функций эпидермиса индуцирует выработку мРНК и активизацию указанных энзимов. В результате запускается синтез жирных кислот de novo [18].

Высокоспециализированные липиды рогового слоя характеризуются уникальной организацией — они образуют билипидные прослойки между корнеоцитами. Детальное изучение состава и характера билипидного матрикса привело ученых к созданию сначала модели «решетки» по Р. Wertz и D. Downing (1978), а затем — «сэндвича» по А. Rawlings (2003). В результате были кристаллические фазы, обеспечивающие каркас билипидной структуры, и более полярная гидрофильная фаза, находящаяся между двумя кристаллическими [4, 6].


Указанные липиды формируют основной барьер для воды, препятствуя тем самым *трансэпидермальной потере воды* (ТЭПВ, или transepidermal water loss, TEWL). Они также играют роль особого межклеточного цементирующего вещества, дающего прочность сцепления структур рогового слоя и обеспечивающего целостность кожи. Кроме того, высокоспециализированные липиды рогового слоя предупреждают проникновение через кожу водорастворимых веществ [2, 6].

Известно, что состав липидов весьма вариабелен в популяции и зависит от расы, сопутствующих соматических заболеваний, возраста, окружающей среды и ряда других факторов [6, 8, 10, 14, 19, 20]. Выявлено, что количество липидов в роговом слое определяет барьерные функции кожи в различных анатомических локализациях. Так, роговой слой в области ладоней и подошв характеризуется малым количеством липидов, а в области кожи лица — достаточно большим. Исследования проницаемости указанных участков кожи выявили, что кожа ладоней и подошв хорошо проницаема для водорастворимых субстанций (например, некоторые соединения никеля) и слабопроницаема для липофильных. Напротив, кожа на лице характеризуется низкими константами проницаемости для водорастворимых веществ и высокими — для липидов [14].

Показано также, что количественные и качественные нарушения липидов приводят к изменению процессов кератинизации, удержания воды в коже и проницаемости кожи [6, 8]. Изменения содержания и соотношения липидов выявлены при многих дерматозах, в частности при атопическом дерматите, акне, псориазе, наследственном и приобретенном ихтиозе и других заболеваниях [1, 6, 8, 14]. Это явилось веским основанием для разработки рекомендаций по адекватному базовому уходу за кожей таких пациентов [3, 7, 19].

Образование натирального ивлажняющего фактакже относится к системе поддержания гомеостаза в структурах кожи. Известно, что натуральный увлажняющий фактор (natural moisturizing factor, NMF) вырабатывается в роговом слое из филаггрина корнеоцитов. В процессе метаболизма филаггрина аминокислоты гистидин, глутамин и аргинин, входящие в его состав, трансформируются в трансуроканиновую и пирролидонкарбоксиловую кислоты, а также цитруллин (см. рисунок). Именно эти вещества и образуют NMF, они способны регулировать содержание воды в роговом слое за счет своей гидрофильности [4, 8]. Производители косметических средств включают в увлажняющие продукты вещества, соответствующие NMF: пирролидонкарбоксиловую кислоту, мочевину (до 5—10%), лимонную кислоту и другие ингредиенты [4, 6, 8, 10].

Процесс десквамации представляет собой энзимную деградацию корнеодесмосом, соединяющих постклеточные структуры рогового слоя. Он регулируется системой гидролитических энзимов и заключается в равномерном отделении корнеоцитов с поверхности рогового слоя. Установлено, что активность энзимов коррелирует с содержанием воды в роговом слое. Так, активность энзимов резко снижается при недостаточной увлажненности кожи, что приводит к неполному и неравномерному отделению роговых чешуек с поверхности кожи [10]. Темп десквамации регулируется также керамидами [1, 2, 4].

Говоря о барьерных свойствах кожи, нельзя не упомянуть роль керамидов в обеспечении защиты ее поверхности от микроорганизмов (так называемый «антимикробный» эффект) [2, 4, 8]. Известно также, что высокой активностью в отношении бактерий, грибов и вирусов обладают факторы врожденного иммунитета — так называемые антимикробные пептиды (АМРѕ). Они представлены в основном β-дефенсинами, известными своей активностью в отношении грамположительных и грамотрицательных бактерий, Candida albicans и грибов, а также кателецидином, или LL-37, известным своей противовирусной активностью [13, 20].

Основные механизмы восстановления барьерных свойств кожи

В практике дерматовенеролога и косметолога нередко встречаются случаи опосредованного нарушения барьерных свойств кожи у пациентов. Так, к временному нарушению барьерных свойств кожи может приводить наружное применение препаратов и средств, содержащих витамин А и его аналоги, различные кислоты, а также спирты. Аналогичный эффект вызывают химический и механический пилинги, ряд лазерных технологий, а также вапоризация, дезинкрустация, броссаж и некоторые другие процедуры. Описаны изменения липидного матрикса при сезонном и старческом ксерозе, а также при фотостарении. Кроме того, барьерные свойства кожи существенно изменяются на фоне системного приема изотретиноина [1, 6, 10, 19]. В связи с этим крайне важно знание механизмов репарации кожного барьера и способов их оптимизации.

Острое нарушение эпидермального барьера инициирует серию репаративных механизмов, что

приводит к быстрому восстановлению нормальной проницаемости рогового слоя. Буквально в течение первых часов после повреждения происходит высвобождение уже синтезированных липидов из ламеллярных телец поверхностных рядов клеток зернистого слоя, а в дальнейшем ускоряются их синтез и пролиферация базальных кератиноцитов [10, 12]. В среднем у человека этот процесс занимает до 72 ч. Деятельность клеток, участвующих в восстановительном процессе, координируется с помощью цитокинов, поэтому при повреждении барьеров кожи их секреция ускоряется. Эти реакции поначалу носят адаптивный характер и в конечном итоге приводят к полному восстановлению барьерных свойств кожи. Вместе с тем, если повреждение барьера велико или оно часто повторяется, появляется риск развития гиперплазии эпидермиса и воспаления [6, 21].

Установлено, что скорость восстановления барьеров кожи существенно замедляется при ношении окклюзионной повязки в области повреждения. Это объясняется тем, что репарация запускается в результате увеличения ТЭПВ. Как только ТЭПВ снижается, синтез высокоспециализированных липидов ингибируется [12]. Данный факт следует учитывать при выборе повязок после проведения инвазивных косметологических и хирургических манипуляций.

Большой интерес представляют сведения о «градиенте» ионов кальция в эпидермисе. Так, было продемонстрировано, что концентрация кальция нарастает в клетках эпидермиса от базального к зернистому слою, а в роговом слое кальций отсутствует. Повреждение барьера кожи ведет к появлению кальция в роговом слое и исчезновению градиента его концентрации в эпидермисе. При этом исчезновение градиента кальция стимулирует ламеллярные тельца клеток зернистого слоя к продукции высокоспециализированных липидов [16]. Было продемонстрировано также, что введение в наружные средства кальция замедляет секреторные процессы в ламеллярных тельцах, а следовательно, и восстановление проницаемости рогового слоя [17]. В то же время уменьшение концентрации кальция в зернистом слое при ионофорезе в условиях эксперимента стимулирует ламеллярные тельца даже при неизмененных барьерных свойствах рогового слоя [15]. В целом же исследования роли нарушений состояния макро- и микроэлементов в эпидермисе, равно как и целесообразности включения некоторых из них (например, магния, цинка, меди и др.) в состав наружных средств, представляются перспективными направлениями современной дерматологии [4, 6, 10].

Понятие базового ухода за кожей

Базовый уход за кожей играет существенную роль как у здоровых лиц, так и у пациентов с различными дерматозами. Кроме того, считается важным применение внутрь различных нутриентов, способствующих поддержанию или восстановлению барьеров кожи. К наиболее популярным относят линолевую кислоту, полиненасыщенные жирные кислоты и другие агенты [4, 11]. Современный уход за любым типом кожи должен включать два основных компонента: бережное очищение и адекватное увлажнение [4].

Очищение кожи может достигаться с помощью различных детергентов: анионных, катионных, амфотерных и неионных. Наиболее перспективными детергентами являются неионные: эфиры и мицеллы жирных кислот, сапонин, эфиры сорбитана, изотионат кокоила и др. [4, 8]. Известно, что использование моющих средств и эмульсий, содержащих неионные детергенты, является важной профилактикой ТЭПВ, а также избыточной проницаемости кожи для аллергенов. Например, показано, что непереносимость некоторых увлажняющих средств, содержащих ретинола пальмитат, была непосредственно связана с качеством очистителя, используемого пациентами до нанесения увлажняющего средства [7, 21].

Дискутируется частота использования воды для очищения как больной, так и здоровой кожи [4, 8]. В исследовании С. Chiang и L. Eichefield (2009) было продемонстрировано, что у больных атопическим дерматитом гидратация рогового слоя уменьшена. Мытье без последующего увлажнения кожи резко снижало параметры ее увлажненности, вместе с тем увлажнение без предшествующего очищения с помощью воды существенно увеличивало содержание воды в роговом слое [11]. В последние годы предпочтение отдают средствам, способным очищать кожу без применения воды, которая может усиливать

проницаемость рогового слоя [4, 8]. В частности, новая гамма средств для базового ухода за кожей «Физиогель» включает средство для глубокого очищения кожи лица. В состав этого средства включен изотионат кокоила, относящийся к неионным детергентам, а анионные детергенты отсутствуют. Средство для глубокого очищения кожи лица «Физиогель» может использоваться для очищения и демакияжа кожи без воды и показано для лиц с чувствительной, дегидратированной кожей, пациентов с атопическим дерматитом, ретиноидным дерматитом и другими дерматозами.

Таким образом, наиболее важной задачей в настоящее время является подбор современных детергентов, способных обеспечить оптимальную очистку кожи, не повреждая липиды рогового слоя. Вторым этапом ухода за кожей является ее адекватное увлажнение. В настоящее время выделяют три группы веществ, оказывающих увлажняющее действие: вещества, обеспечивающие прямое увлажнение, вещества, образующие пленку, и кератолитические средства (см. таблицу).

Важной задачей для производителей средств для базового ухода является создание средств, содержащих вещества, максимально соответствующие липидам кожи. Обычно в их состав активно включают увлажнители и пленкообразующие вещества, а также новые синтезированные молекулы, максимально соответствующие липидам кожи.

Кроме того, в последние годы стали широко применять новые технологии изготовления наружных средств [8, 10]. К наиболее перспективным относят технологию «двойного эмульгирования», липосомальные технологии, технологию микронизации, а также технологию «дерма-мембранной структуры». В частности, новый крем из гаммы средств «Физиогель» изготавливается по технологии «дермамембранной структуры», являющейся разработкой компании Stiefel 2000 г. Она представляет собой особую запатентованную технологию смешивания ингредиентов, заключающуюся в серии процедур гомогенизации компонентов основы под высоким давлением, которая возможна только в условиях высокотехнологичного производства. В состав средства включены липиды растительного происхождения, наиболее адаптированные для кожи человека: триглицериды, холестерол, фосфолипиды, свободные жирные кислоты, сквалены и керамиды. Благодаря этому полученная эмульсия имеет так называемую «ламеллярную» структуру, максимально соответствующую по дисперсности и составу естественному липидному матриксу, что обеспечивает глубокое проникновение средства в роговой слой и не требует включения дополнительных эмульгаторов, способных вызывать эффект «вымывания собственных липидов». Клинические исследования крема «Физиогель» у пациентов с атопическим дерматитом продемонстрировали его хорошую переносимость и

Таблица

Основные компоненты увлажняющих средств

Характер увлажняющего действия		Ингредиенты
Прямое увлажнение	Компоненты кожного барьера	Холестерол, жирные кислоты, керамиды, сфингоидные основания и др.
	Вещества, удерживающие воду в коже (хумиктанты)	NMF, полиолы (глицерол, сорбитол, пропиленгликоль), макромолекулы (ГАГ, коллаген, эластин, ДНК, гиалуроновая кислота), липосомы
	Вещества, усиливающие способность эпидермиса абсорбировать глицерол и воду из микроциркуляторного русла (через аквапориновые каналы)	Различные пептиды (так называемые стимуляторы аквапориновых каналов)
Уменьшение ТЭПВ (вещества, способствующие образованию пленки)		Вазелин, парафин, пергидросквален, различные силиконы, натуральные масла, богатые полиненасыщенными жирными кислотами, воск, ланолин, некоторые жирные спирты
Кератолитический эффект		Салициловая кислота, α - и β -гидроксикислоты, мочевина (в концентрации выше 10%) и др.

клиническую эффективность, а также достоверное улучшение показателей увлажненности кожи [3].

В заключение следует подчеркнуть, что к настоящему времени накоплено большое количество данных о барьерных свойствах кожи и структурах, их обеспечивающих. Базовый уход за кожей играет существенную роль как у здоровых лиц, так и у пациентов с различными дерматозами. Инновационная гамма «Физиогель» может быть рекомендована для лечебного ухода лицам с признаками нарушения барьерных свойств кожи различного происхождения. Следует еще раз напомнить о важности комплексного и аналитического подхода к пациенту, имеющему признаки нарушения барьерных свойств кожи.

Литература

- 1. Аравийская Е.Р., Красносельских Т.В., Соколовский Е.В. Акне: В кн. Акне. Кожный зуд. Урогенитальная хламидийная инфекция. Под ред. проф. Е.В. Соколовского. СПб.: Сотис, 1999; 68—100.
- 2. Быков В.Л. Частная гистология (краткий обзорный курс). СПб.: АНТ-М, 1994; 252.
- Кассирова Д.А. Применение крема с дерма-мембранной структурой при атопическом дерматите. РМЖ 2010; 18:18 (376).
- Руководство по дерматокосметологии. Под ред. Е.Р. Аравийской и Е.В. Соколовского. СПб.: ООО «Издательство Фолиант», 2008; 632.
- 5. Фержтек О. и соавт. Косметология. Теория и практика. Издание на русском языке. Изд-во Lekarske a Kosmeticke Centrum s.r.o. 2002; 378.
- Эрнандес Е., Марголина А., Петрухина А. Липидный барьер кожи и косметические средства. Изд. 3-е, дополненное. М.: ООО «Фирма КЛАВЕЛЬ», 2005; 400.
- Gougerot A., Enjolras O. Ameliorer les peaux seches pathologques. Rev Eur Dermatol MST 1992; 75—82.
- Baran R., Maibach H.I. Textbook of cosmetic Dermatology. Martin Dunitz Ltd 1998; 99—167.

- Chang C., Eichenfield L.E. Quantitative assessment of combination bathing and moisturizing regimens on skin hydration in atopic dermatitis. Pediatric Derm 2009; 26: 3: 273—278.
- Draelos Z.D. Cosmeceuticals. Second edition. Saunders Elsevier 2009; 7–15.
- 11. Elias P.M., Brown B.E. The mammalian cutaneous permeability barrier: defective barrier function is essential fatty acids deficiency correlates with abnormal intercellular lipid deposition. Lab Invest 1978; 39: 574.
- Grubauer G., Elias P.M., Feingold K.R. Transepidermal water loss: the signal for recovery of barrier structure and function. J Lipid Res 1989; 30: 323—330.
- 13. Fulton C., Anderson G.M., Zasloff M. et al. Expression of human peptide antibiotics in human skin. Lancet 1997; 350: 750.
- Lampe M.A., Burlingame A.L., Whitney J. et al. Human stratum corneum lipids: characterization and regional variations. J Lipid Res 1983: 24: 120.
- Lee S.H., Choi E.N., Feingold K.R. et al. Iontophoresis itself on hairless mouse skin induces the loss of the epidermal calcium gradient without skin barrier impairment. J Invest Dermatol 1998; 11: 139.
- Menon G.K., Elias P.M. Ultrastructural localization of calcium in psoriatic and normal epidermis. Arch Dermatol 1991; 127: 127: 157.
- Menon G.K., Elias P.M., Feingold K.R. Integrity and permeability barrier is crucial for maintenance of the epidermal calcium gradient. Br J Dermatol 1994; 130: 139—145.
- 18. Menon G.K., Feingold K.R., Mao-Qiang M. et al. // Structiral basis for barrier abnormality following inhibition of HMG CoA reductase in murine epidermis. Arch Dermatol 1991; 127: 157.
- 19. Rawlings A.V. Trends in stratum corneum and the management of dry conditions. Int J of Cosmet Science 2003; 25: 63—95.
- 20. Rice W.G., Ganz T., Kinkade J.M.J. Defensin-rich dence granules of human neutrophils. Blood 1987; 70: 757.
- Wilkinson J.D. The skin as a chemical barrier. In: The Physical Nature of the Skin. Marks R.M., Barton S.P., Edwards C. eds. MPT Press 1988; 73—78.

Статья публикуется при поддержке компании ЗАО «ГлаксоСмитКляйн Трейдинг»

ФИЗИОТЕЛЬ — семейство средств с малокомпонентным составом для физиологического восстановления сухой, раздраженной и склонной к аллергии кожи

- Крем с ДМС* воссоздает липидный барьер и борется с сухостью кожи
- Средство для глубокого очищения кожи лица подходит для всех типов кожи
- **Шампунь Плюс** (с кондиционером) ежедневный уход за чувствительной кожей головы и сухими, ломкими волосами

*ДМС – Дерма-Мембранная Структура, имитирующая естественную структуру липидного барьера кожи

