Targeted photosensitizer delivery: A prospective approach to vitiligo photochemotherapy

Cover Page
  • Authors: Utz S.R.1, Sukhorukov G.B.2, Tuchin V.V.3,4, Gorin D.A.3, Genina E.A.3,4, Svenskaya Y.I.3, Talnikova E.E.1
  • Affiliations:
    1. Saratov State Medical University named after V. I. Razumovsky, Ministry of Health of the Russian Federation
    2. Queen Mary University of London
    3. Saratov State University
    4. National Research Tomsk State University
  • Issue: Vol 95, No 1 (2019)
  • Pages: 21-29
  • Section: SCIENTTIFIC RESEARCHES
  • URL: http://vestnikdv.ru/jour/article/view/463
  • DOI: https://doi.org/10.25208/0042-4609-2019-95-1-21-29

Abstract


Aim. In this work, the authors set out to develop an effective method for the intrafollicular delivery of “Ammi majus fructuum furocumarines” photosensitizer (AMFF) followed by UVA irradiation (λ = 320–400 nm). Materials and methods. The proposed delivery method consists in using calcium carbonate particles acting as AMFF carriers. In vivo monitoring of hair follicle filling was carried out via optical coherence tomography, as well as by means of analyzing epilated hair using confocal laser scanning microscopy. Following the administration of free and encapsulated AMFF to three healthy volunteers, the character of UVA-induced skin pigmentation was registered under dermatoscopic examination. Results. The obtained results demonstrate a profuse filling of hair follicles with calcium carbonate particles, thus confirming the possibility of intrafollicular photosensitizer delivery. It was established that exposure to UVA irradiation causes intense pigment accumulation in the area of AMFF carrier administration. Conclusion. The proposed method of the targeted photosensitizer delivery allows photochemical therapy to be improved.


About the authors

S. R. Utz

Saratov State Medical University named after V. I. Razumovsky, Ministry of Health of the Russian Federation

Email: fake@neicon.ru

Russian Federation Dr. Sci. (Med.), Prof., Departmental Head, Department of Skin and Venereal Diseases

G. B. Sukhorukov

Queen Mary University of London

Email: fake@neicon.ru

United Kingdom Cand. Sci. (Phys.-Math.), Prof., Chair of Biomedical Materials Division, School of Engineering and Materials Science

V. V. Tuchin

Saratov State University;
National Research Tomsk State University

Email: fake@neicon.ru

Russian Federation Dr. Sci. (Phys.-Math.), Prof., Departmental Head, Department of Optics and Biophotonics, Director of Research and Educational Institute of Optics and Biophotonics, Saratov State University; Research Supervisor, Laboratory of Biophotonics, National Research Tomsk State University

D. A. Gorin

Saratov State University

Email: fake@neicon.ru

Russian Federation Dr. Sci. (Chem.) Associate Professor, Deputy Director of Research and Educational Institute of Optics and Biophotonics; Prof., Department of Semiconductor Physics

E. A. Genina

Saratov State University;
National Research Tomsk State University

Email: fake@neicon.ru

Russian Federation Cand. Sci. (Phys.-Math.), Associate Professor, Department of Optics and Biophotonics, Senior Researcher, Laboratory of Biomedical Optics, Research and Educational Institute of Optics and Biophotonics, Saratov State University; Leading Researcher, Laboratory of Biophotonics, National Research Tomsk State University

Yu. I. Svenskaya

Saratov State University

Author for correspondence.
Email: yulia_svenskaya@mail.ru

Russian Federation Cand. Sci. (Phys.-Math.), Senior Researcher, Laboratory of Remote Controlled Theranostic Systems

E. E. Talnikova

Saratov State Medical University named after V. I. Razumovsky, Ministry of Health of the Russian Federation

Email: fake@neicon.ru

Russian Federation Registrar, Department of Skin and Venereal Diseases

References

  1. Федеральные клинические рекомендации. Дерматовенерология 2015: Болезни кожи. Инфекции, передаваемые половым путем. 5-е изд., перераб. и доп. М.: Деловой экспресс, 2016.
  2. Afsheen B., Irfan A. Guidelines for the management of vitiligo. Journal of Pakistan Association of Dermatologists. 2014;24(1):68–78.
  3. Amanjot K. A., Sunil D. Narrowband ultraviolet B and beyond: Evolving role of phototherapy in vitiligo. Pigment International. 2015;2(1):9–20.
  4. Bellet J. S., Prose N. S. Vitiligo in children: a review of classification, hypotheses of pathogenesis and treatment. An Bras Dermatol. 2005;80(6):633–636.
  5. Lademann J., Knorr F., Richter H., Jung S. et al. Hair follicles as a target structure for nanoparticles. Journal of Innovative Optical Health Sciences. 2015;8(4):1530004 1–8.
  6. Knorr F., Lademann J., Patzelt A. et al. Follicular transport route–research progress and future perspectives. European Journal of Pharmaceutics and Biopharmaceutics. 2009;71(2):173–180.
  7. Wosicka H., Cal K. Targeting to the hair follicles: current status and potential. Journal of dermatological science. 2010;57(2):83–89.
  8. Cui J., Shen L. Y., Wang, G. C. Role of hair follicles in the repigmentation of vitiligo. Journal of Invest Dermatol. 1991;97(3):410–416.
  9. Ortonne J. P., Schmitt D., Thivolet J. PUVA-induced repigmentation of vitiligo: scanning electron microscopy of hair follicles. Journal of Invest Dermatol. 1980;74(1):40–42.
  10. Meidan V. M., Bonner M. C., Michniak B. B. Transfollicular drug delivery — is it a reality? International Journal of Pharmaceutics. 2005;306:1–14.
  11. Toll R., Jacobi U., Richter H. et al. Penetration profile of microspheres in follicular targeting of terminal hair follicles. Journal of Investigative Dermatology. 2004;123(1):168–176.
  12. Fang C. L., Aljuffali I. A., Li Y. C. et al. Delivery and targeting of nanoparticles into hair follicles. Therapeutic delivery. 2014;5(9):991–1006.
  13. Parakhonskiy B. V., Haase A., Antolini R. Sub Micrometer Vaterite Containers: Synthesis, Substance Loading, and Release. Angewandte Chemie International Edition. 2012;51(5):1195–1197.
  14. Svenskaya Y., Parakhonskiy B., Haase A. et al. Anticancer drug delivery system based on calcium carbonate particles loaded with a photosensitizer. Biophysical chemistry. 2013;182:11–15.
  15. Фицпатрик Т., Джонсон Р., Полано М. и др. Дерматология: Атлас- справочник. Мак-Гроу-Хилл: Практика, 1999.
  16. Volodkin D. V., Petrov A. I., Prevot M. et al. Matrix polyelectrolyte microcapsules: new system for macromolecule encapsulation. Langmuir. 2004;20(8):3398–3406.
  17. Svenskaya Y. I., Pavlov A. M., Gorin D. A. et al. Photodynamic therapy platform based on localized delivery of photosensitizer by vaterite submicron particles. Colloids and Surfaces B: Biointerfaces. 2016;146:171–179.
  18. Parakhonskiy B. V., Foss C., Carletti E. et al. Tailored intracellular delivery via a crystal phase transition in 400 nm vaterite particles. Biomaterials Science. 2013;1(12):1273–1281.
  19. Fujiwara M., Shiokawa K., Morigaki K. et al. Calcium carbonate microcapsules encapsulating biomacromolecules. Chemical Engineering Journal. 2008;137(1):14–22.
  20. Skotarczak K., Osmola-Mankowska A., Lodyga M. et al. Photoprotection: facts and controversies. European Review for Medical and Pharmacological Sciences. 2015;19:98–112.
  21. Fajuyigbe D., Young A. R. The impact of skin colour on human photobiological responses. Pigment Cell Melanoma. 2016;29(6):607– 618.
  22. Pathak M. A., Riley F. C., Fitspatrik T. B. Melanogenesis in human skin following exposure to long-wave ultraviolet and visible light. Journal of Invest Dermatol. 1962:435–443.

Statistics

Views

Abstract - 684

PDF (Russian) - 215

PlumX

Dimensions


Copyright (c)



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies