Medical cell technologies for treatment of patients suffering from recessive dystrophic epidermolysis bullosa. Method of intracutaneous administration of fibroblasts

Cover Page


Cite item

Full Text

Abstract

Recessive dystrophic epidermolysis bullosa (RDEB) is a severe inherited disease developing due to genetic abnormalities in the synthesis of Type VII collagen by fibroblasts. A low production rate of Type VII collagen and abnormalities related to the formation of anchoring fibrils weaken the epidermis and derma adhesion strength, which results in the formation of blisters or erosions in case of any mechanical injury. Fibroblasts and keratinocytes belong to the key sources of Type VII collagen in the skin. Application of allogeneic fibroblasts is a promising cell technique for treating RDEB patients. The therapeutic effect of fibroblasts intradermal administration is stipulated by high stability of newly synthesized Type VII collagen and its ability to form anchoring fibrils in the area of the dermoepidermal junction. According to experimental and clinical studies, it is possible to boost the content of Type VII collagen in the dermoepidermal junction area and heal long-term skin defects in RDEB patients by means of intradermal administration of allogeneic fibroblasts.

About the authors

V. I. Albanova

State Research Center of Dermatovenereology and Cosmetology, Ministry of Healthcare of the Russian Federation

Author for correspondence.
Email: noemail@neicon.ru
Россия

A. E. Karamova

State Research Center of Dermatovenereology and Cosmetology, Ministry of Healthcare of the Russian Federation

Email: noemail@neicon.ru
Россия

V. V. Chikin

State Research Center of Dermatovenereology and Cosmetology, Ministry of Healthcare of the Russian Federation

Email: chikin@cnikvi.ru
Россия

A. A. Mineyeva

State Research Center of Dermatovenereology and Cosmetology, Ministry of Healthcare of the Russian Federation

Email: noemail@neicon.ru
Россия

References

  1. Fine J. D. Inherited epidermolysis bullosa. Orphanet J Rare Dis. 2010; 5: 12.
  2. Wertheim-Tysarowska K., Sobczyska-Tomaszewska A., Kowalewski C. et al. The COL7A1 mutation database. Hum Mutat 2012; 33: 327-331.
  3. Kern J. S., Gruninger G., Imsak R. et al. Forty-two novel COL7A1 mutations and the role of a frequent single nucleotide polymorphism in the MMP1 promoter in modulation of disease severity in a large European dystrophic epidermolysis bullosa cohort. Br J Dermatol 2009; 161 (5): 1089-1097.
  4. Heinonen S., Männikko M., Klement J. F. et al. Targeted inactivation of the type VII collagene gene (Col7a1) in mice results in severe blistering phenotype: a model for recessive dystrophic epidermolysis bullosa. J Cell Sci 1999; 112: 3641-3648.
  5. Fritsch A., Loeckermann S., Kern J. S. et al. A hypomorphic mouse model of dystrophic epidermolysis bullosa reveals mechanisms of disease and response to fibroblast therapy. J Clin Invest 2008; 118: 1669-1679.
  6. Tidman M. J., Eady R. A. Evaluation of anchoring fibrils and other components of the dermal-epidermal junction in dystrophic epidermolysis bullosa by a quantitative ultrastructural technique. J Invest Dermatol 1985; 84: 374-377.
  7. Wang X., Ghasri P., Amir M. et al. Topical application of recombinant type VII collagen incorporates into the dermal-epidermal junction and promotes wound closure. Mol Ther 2013; 21 (7): 1335-1344.
  8. Kern J. S., Has C. Update on diagnosis and therapy of inherited epidermolysis bullosa. Exp Rev Dermatol 2008; 3: 721-733.
  9. Fine J. D., Johnson L. B., Weiner M. et al. Epidermolysis bullosa and the risk of life-threatening cancers: the National EB Registry experience, 1986-2006. J Am Acad Dermatol 2009; 60 (2): 203-211.
  10. Yan W. F., Murrell D. F. Fibroblast-based cell therapy strategy for recessive dystrophic epidermolysis bullosa. Dermatol Clin 2010; 28: 367-370.
  11. Vanden Oever M. J., Tolar J. Advances in understanding and treating dystrophic epidermolysis bullosa. F1000Prime Reports 2014, 6: 35.
  12. Konig A., Bruckner-Tuderman L. Transforming growth factor-beta stimulates collagen VII expression by cutaneous cells in vitro. J Cell Biol 1992; 117: 679-685.
  13. Goto M., Sawamura D., Ito K. et al. Fibroblasts show more potential as target cells than keratinocytes in COL7A1 gene therapy of dystrophic epidermolysis bullosa. J Invest Dermatol 2006; 126: 766-772.
  14. Pageon H., Zucchi H., Asselineau D. Distinct and complementary roles of papillary and reticular fibroblasts in skin morphogenesis and homeostasis. Eur J Dermatol 2012; 22: 324-332.
  15. Sorrell J. M., Baber M. A., Caplan A. I. Sitematched papillary and reticular human dermal fibroblasts differ in their release of specific growth factors/cytokines and in their interaction with keratinocytes. J Cell Physiol 2004; 200: 134-145.
  16. Driskell R. R., Lichtenberger B. M., Hoste E. et al. Distinct fibroblast lineages determine dermal architecture in skin development and repair. Nature 2013; 504: 277-281.
  17. Wang J., Dodd C., Shankowsky H. A. et al. Deep dermal fibroblasts contribute to hypertrophic scarring. Lab Invest 2008; 88 (12): 1278-1290.
  18. Varkey M., Ding J., Tredget E. E. Differential collagen-glycosaminoglycan matrix remodeling by superficial and deep dermal fibroblasts: potential therapeutic targets for hypertrophic scar. Biomaterials 2011; 32 (30): 7581-7591.
  19. Varkey M., Ding J., Tredget E. E. Superficial dermal fibroblasts enhance basement membrane and epidermal barrier formation in tissue-engineered skin: implications for treatment of skin basement membrane disorders. Tissue Eng Part A 2014; 20 (3-4): 540-552.
  20. Gawronska-Kozak B. Scarless skin wound healing in FOXN1 deficient (nude) mice is associated with distinctive matrix metalloproteinase expression. Matrix Biol 2011; 30 (4): 290-300.
  21. Thangapazham R. L., Darling T. N., Meyerle J. Alteration of skin properties with autologous dermal fibroblasts. Int J Mol Sci 2014; 15 (5): 8407-8427.
  22. Chen M., Woodley D. T. Fibroblasts as target cells for DEB gene therapy. J Invest Dermatol 2006;126 (4): 708-710.
  23. Zorin V. L., Zorina A. I., Cherkasov V. R. Dermal'nye fibroblasty: chto novogo? Perspektivy klinicheskogo primeneniya. Kosmetika & Meditsina 2010; 3: 28-33. [Зорин В. Л., Зорина А. И., Черкасов В. Р. Дермальные фибробласты: что нового? Перспективы клинического применения. Косметика & Медицина 2010; 3: 28-33.]
  24. Kuttner V., Mack C., Gretzmeier C. et al. Loss of collagen VII is associated with reduced transglutaminase 2 abundance and activity. J Invest Dermatol 2014; 134 (9): 2381-2389.
  25. Davidson J. M. Proteomic revelations. J Invest Dermatol 2014; 134 (9): 2301-2302.
  26. Ortiz-Urda S., Lin Q., Green C. L. et al. Injection of genetically engineered fibroblasts corrects regenerated human epidermolysis bullosa skin tissue. J Clin Invest 2003; 111: 251-255.
  27. Woodley D. T., Krueger G. G., Jorgensen C. M. et al. Normal and gene-corrected dystrophic epidermolysis bullosa fibroblasts alone can produce type VII collagen at the basement membrane zone. J Invest Dermatol 2003; 121: 1021-1028.
  28. Kern J. S., Loeckermann S., Fritsch A. et al. Mechanisms of fibroblast cell therapy for dystrophic epidermolysis bullosa: high stability of collagen VII favors long-term skin integrity. Mol Ther 2009; 17 (9): 1605-1615.
  29. Wong T., Gammon L., Liu L. et al. Potential of fibroblast cell therapy for recessive dystrophic epidermolysis bullosa. J Invest Dermatol 2008; 128: 2179-2189.
  30. Nagy N., Almaani N.,Tanaka A. et al. HB-EGF induces COL7A1 expression in keratinocytes and fibroblasts: possible mechanism underlying allogeneic fibroblast therapy in recessive dystrophic epidermolysis bullosa. J Invest Dermatol 2011; 131: 1771-1774.
  31. Petrof G., Martinez-Queipo M., Mellerio J. E. et al. Fibroblast cell therapy enhances initial healing in recessive dystrophic epidermolysis bullosa wounds: results of a randomized, vehicle-controlled trial. Br J Dermatol 2013; 169: 1025-1033.
  32. Venugopal S. S., Yan W., Frew J. W. et al. A phase II randomized vehicle-controlled trial of allogeneic fibroblasts for recessive dystrophic epidermolysis bullosa. J Am Acad Dermatol 2013; 10: 898-908.
  33. Rouabhia M., Park H., Meng S. et al. Electrical stimulation promotes wound healing by enhancing dermal fibroblast activity and promoting myofibroblast transdifferentiation. PLoS One 2013; 8 (8): e71660.
  34. Tanaka M., Misawa E., Yamauchi K. et al. Effects of plant sterols derived from Aloe vera gel on human dermal fibroblasts in vitro and on skin condition in japanese women. Clin Cosmet Investig Dermatol 2015; 8: 95-104.
  35. Hashimoto K., Higashiyama S., Asada H. et al. Heparin-binding epidermal growth factor-like growth factor is an autocrine growth factor for human keratinocytes. J Biol Chem 1994; 269: 20060-20066.
  36. Goishi K., Higashiyama S., Klagsbrun M. et al. Phorbol ester induces the rapid processing of cell surface heparin-binding EGF-like growth factor: conversion from juxtacrine to paracrine growth factor activity. Mol Biol Cell 1995; 6: 967-980.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2015 Albanova V.I., Karamova A.E., Chikin V.V., Mineyeva A.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 60448 от 30.12.2014.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies