Role of peptide growth factors in the rhythm of change hair

Cover Page


Cite item

Full Text

Abstract

The article presents current data on the role growth factors play in hair physiology. Based on a review of literature, the authors described the role growth factors play for initiating, suppressing the growth and differentiating hair follicles. According to them, each morphologic development stage of hair follicles is characterized by its own factor expression pattern. Referring to experimental and clinical studies, the authors describe the role some growth factors play for mechanisms promoting the development of androgynous and focal alopecia.

About the authors

A. A. Kubanov

Russian Medical Academy of Postgraduate Studies, Ministry of Health of the Russian Federation; State Research Center of Dermatovenereology and Cosmetology Ministry of Healthcare of the Russian Federation

Author for correspondence.
Email: noemail@neicon.ru
Russian Federation

YU. A. Gallyamova

Russian Medical Academy of Postgraduate Studies, Ministry of Health of the Russian Federation

Email: noemail@neicon.ru
Russian Federation

O. A. Selezneva

Russian Medical Academy of Postgraduate Studies, Ministry of Health of the Russian Federation

Email: olselezneva83@gmail.com
Russian Federation

References

  1. Кошевенко Ю.Н. Кожа человека. Руководство для врачей и студентов. М: Медицина; 2008.
  2. Хабер Р.С., Стау Д.Б. Трансплантация волос. М: Ред Эсливер; 2009.
  3. Мяделец О.Д., Адаскевич В.П. Морфофункциональная дерматология. М: Медлит; 2006.
  4. Messenger A.G., de Berker D.A.R., Sinclair R.D. Chapter 66. Disorders of Hair. In: Rook’s Textbook of Dermatology. 8th ed. Oxford, UK: Blackwell Science Publications 2010; 66.1-66.16.
  5. Клаус Вольф, Лоуэлл А. Голдсмит, Стивен И. Кац и др.; пер. с англ.; общ. ред. акад. А.А. Кубановой. Дерматология Фицпатрика в клинической практике: В 3 т. М: Издательство Панфилова; БИНОМ. Лаборатория знаний; 2012.
  6. Millar S.E. Molecular mechanisms regulating hair follicle development. J Invest Dermatol 2002; 118: 216-225.
  7. Schmidt-Ullrich R., Paus R. Molecular principles of hair follicle induction and morphogenesis. BioEssays 2005; 27: 247-261.
  8. Соколовский Е.В. Облысение. Дифференциальный диагноз. Методы терапии. СПб: СОТИС; 2003.
  9. Harrison S., Sinclair R. Telogen effluvium. Clin Exp Dermatol 2002; 27: 389-395.
  10. Paus R., Cotsarelis G. The biology of hair follicles. N Engl J Med 1999; 341: 491-497.
  11. Courtois M., Loussouarn G., Hourseau C. Aging and hair cycles. Br J Dermatol 1995; 132: 86-93.
  12. Pierard-Franchimont C., Pierard G.E. Teloptosis, a turning point in hair shedding biorhythms. Dermatology 2001; 203 (2): 115-7.
  13. Rebora A., Guarrera M. Kenogen. A new phase of the hair cycle? Dermatology 2002; 205: 108-10.
  14. Rebora A. Pathogenesis of androgenetic alopecia. J Am Acad Dermatol 2004; 50 (5): 777-9.
  15. Guarrera M., Rebora A. Kenogen in female androgenetic alopecia. A longitudinal study. Dermatology 2005; 210 (1): 18-20.
  16. Messenger A.G., Sinclair R. Follicular miniaturization in female pattern hair loss: clinicopathological correlations. Br J Dermatol 2006; 155 (5): 926-30.
  17. Залкинд Е.С. Болезни волос. Ленинградское отд.: Мед Гис; 1959.
  18. Katsuoka K., Schell H., Wessel B., Hornstein O.P. Effects of epidermal growth factor, fibroblast growth factor, minoxidil and hydrocortisone on growth kinetics in human hair bulb papilla cells and root sheath fibroblasts cultured in vitro. Arch Dermatol Res 1987; 279: 247-50.
  19. Hu M.C., Qiu W.R., Wang Y. et al. FGF-18, a novel member of the fibroblast growth factor family, stimulates hepatic and intestinal proliferation. Molecular and Cellular Biology 1998; 18: 6063-74.
  20. Jindo T., Tsuboi R., Imai R., Takamori K., Rubin J.S., Ogawa H. Hepatocyte growth factor/ scatter factor stimulates hair growth of mouse vibrissae in organ culture. J Invest Dermatol 1994; 103: 306-9.
  21. Jindo T., Tsuboi R., Takamori K., Ogawa H. Local injection of hepatocyte growth factor/scatter factor (HGF/SF) alters cyclic growth of murine hair follicles. J Invest Dermatol 1998; 110: 338-42.
  22. Itami S., Kurata S., Takayasu S. Androgen induction of follicular epithelial cell growth is mediated via insulin-like growth factor-I from dermal papilla cells. Biochem Biophys Res Commun 1995; 212: 988-94.
  23. Guo L., Degenstein L., Fuchs E. Keratinocyte growth factor is required for hair development but not for wound healing. Genes Dev 1996; 10: 165-75.
  24. Lachgar S., Charveron M., Gall Y., Bonafe J.L. Minoxidil upregulates the expression of vascular endothelial growth factor in human hair dermal papilla cells. Br J Dermatol 1998; 138: 407-11.
  25. Судаков К.В. 2006 Нормальная физиология. М: Медицинское информационное агентство; 2006.
  26. Anitua E., Andia I., Ardanza B., Nurden P., Nurden A.T. Autologous platelets as a source of proteins for healing and tissue regeneration. Thromb Haemost 2004; 91 (1): 4-15.
  27. Takakura N., Yoshida H., Kunisada T., Nishikawa S., Nishikawa S.I. Involvement of platelet-derived growth factor receptor-alpha in hair canal formation. J Invest Dermatol 1996; 107 (5): 770-7.
  28. Yano K., Oura H. Angiogenesis byVEGF controls hair growth and follicle size. Cell Technol 2001; 20: 852-3.
  29. Plikus M.V. New activators and inhibitors in the hair cycle clock:targeting stem cells’ state of competence. J. Invest. Dermatol 2012. 132: 1321-1324.
  30. Andl T., Reddy S.T., Gaddapara T., Millar S.E. WNT signals are required for the initiation of hair follicle development. Dev Cell 2002; 2 (5): 643-53.
  31. Zhang Y., Andl T., Yang S. H. et al. Activation of beta-catenin signaling programs embryonic epidermis to hair follicle fate. Development 2008; 135: 2161-2172.
  32. Gay D., Kwon O., Zhang Z. et al. Fgf9 from dermal γδT cells induces hair follicle neogenesis after wounding. Nature America, Inc 2013. Advance online publication.
  33. Zhang J., He X.C., Tong W.G. et al. Bone morphogenetic protein signaling inhibits hair follicle anagen induction by restricting epithelial stem/ progenitor cell activation and expansion. Stem Cells 2006; 24: 2826-2839.
  34. Greco V., Chen T., Rendl M. et al. A two-step mechanism for stem cell activation during hair regeneration. Cell Stem Cell 2009; 4: 155-169.
  35. Rabbani P., Takeo M., Chou W. et al. Coordinated activation of Wnt in epithelial and melanocyte stem cells initiates pigmented hair regeneration. Cell 2011; 145: 941-955.
  36. Plikus M.V., Mayer J.A., de la Cruz D. et al. Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration. Nature 2008; 451 (7176): 340-4.
  37. Hebert J.M. FGFs: Neurodevelopment’s Jack-of-all-Trades - How do they do it? Front Neurosci 2011; 5: 133.
  38. du Cros D.L. Fibroblast growth factor influences the development and cycling of murine hair follicles. Dev Biol 1993; 156: 444-53.
  39. Clegg C.H., Linkhart T.A., Olwin B.B., Hausch-ka S.D. Growth factor control of skeletal muscle differentiation: commitment to terminal differentiation occurs in Gl phase and and is repressed by fibroblast growth factor. J Cell Biol 1987; 105: 949-956.
  40. Böhlen P., Esch F., Baird A., Gospodarowicz D. Acidic fibroblast growth factor (FgF) from bovine brain: amino-terminal sequence and comparison with basic FGF. EMBO J 1985; 4: 1951-1956.
  41. Gospodarowicz D., Massoglia S., Cheng J., Fujii D.K. Effect of fibroblast growth factor and lipoproteins on the proliferation of endothelial cells derived from bovine adrenal cortex, brain cortex, and corpus luteum capillaries. J Cell Physiol 1986; 127: 121-136.
  42. Chih-Chiang Chen, Cheng Ming Chuong. Multi-layered environmental regulation on the homeostasis of stem cells: The saga of hair growth and alopecia. J Dermatol Sci 2012; 66 (1): 3-11.
  43. Ozeki M., Tabata Y. In vivo promoted growth of mice hair follicles by the controlled release of growth factors. Biomaterials 2003; 24: 2387-94.
  44. Hebert J.M., Rosenquist T., Götz J. et al. FGF5 as a regulator of the hair growth cycle: evidence from targeted and spontaneous mutations. Cell 1994; 78 (6): 1017-25.
  45. Tanaka A., Miyamoto K., Minamino N. et al. Cloning and characterization of an androgen-induced growth factor essential for the androgen-dependent growth of mouse mammary carcinoma cells. Proc Natl Acad Sci 1992; 89: 8928-8932.
  46. Ota Y., Saitoh Y., Suzuki S. et al. Fibroblast growth factor 5 inhibits hair growth by blocking dermal papilla cell activation. Biochem Biophys Res Commun 2002; 290: 169-176.
  47. Kawano M., Komi-Kuramochi A., Asada M. et al. Comprehensive analysis of fgf and fgfr expression in skin: fgf18 is highly expressed in hair follicles and capable of inducing anagen from telogen stage hair follicles. J Invest Dermatol 2005; 124: 877-885.
  48. Kimura-Ueki M., Oda Y., Oki J. et al. Hair cycle resting phase is regulated by cyclic epithelial fgf18 signaling. J Invest Dermatol 2012; 132: 1338-1345.
  49. Imamura T. Cyclic epithelial FGF18 signaling regulates hair cycle resting phase. 8th world congress for hair research. Abstract book. May 14-17, 2014 (11).
  50. Blanpain C., Lowry W.E., Geoghegan A., Polak L., Fuchs E. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 2004; 118: 635-648.
  51. Hsu Y.C., Pasolli H.A., Fuchs E. Dynamics between stem cells, niche, and progeny in the hair follicle. Cell 2011; 144: 92-105.
  52. Shimokawa T., Furukawa Y., Sakai M. et al. Involvement of FGF18 gene in colorectal carcinogenesis, as a novel downstream target of the b-catenin / T-cell factor complex. Cancer Research 2003; 63 (19): 6116-20.
  53. Van Mater D., Kolligs F.T., Dlugosz A.A. et al. Transient activation of b-catenin signaling in cutaneous keratinocytes is sufficient to trigger the active growth phase of the hair cycle in mice. Genes and Development 2003; 17: 1219-24.
  54. Subramanya R.D., Coda A.B., Sinha A.A. Transcriptional profiling in alopecia areata defines immune and cell cycle control related genes within disease-specific signatures. Genomics 2010; 96: 146-53.
  55. Guo L., Yu Q.C., Fuchs E. Targeting expression of keratinocyte growth factor to keratinocytes elicits striking changes in epithelial differentiation in transgenic mice. EMBO J 1993; 12: 973-986.
  56. Danilenko D.M., Ring B.D., Yanagihara D. et al. Keratinocyte growth factor is an important endogenous mediator of hair follicle growth, development, and differentiation. Normalization of the nu/nu follicular differentiation defect and amelioration of chemotherapy-induced alopecia. Am. J. Pathol 1995; 147: 145-154.
  57. Richardson G.D., Bazzi H., Fantauzzo K.A., Waters J.M. et. al. Development 2009; 136 (13): 2153-2164.
  58. Savage C.R.Jr., Hash J. H., Cohen S. Epidermal growth factor. Location of disulfide bonds. J Biol Chem 1973; 247: 7612-7672.
  59. Moore G.P. Panaretto B.A., Carter N.B. Epidermal hyperplasia and wool follicle regression in sheep infused with epidermal growth factor. J Invest Dermatol 1985; 84 (3): 172-5.
  60. Moore G.P. Panaretto B.A., Robertson D. Effects of epidermal growth factor on hair growth in the mouse. J Endocrinol 1981; 88 (2): 293-9.
  61. Fujie T., Katoh S., Oura H., Urano Y., Arase S. The chemotactic effect of a dermal papilla cell-derived factor on outer root sheath cells. J Dermatol Sci 2001; 25: 206-12.
  62. Roy H., Bhardwaj S., Yla-Herttuala S. Biology of vascular endothelial growth factors. FEBS Letters 580 (2006); 2879-2887.
  63. Houck K.A. et al. The vascular endothelial growth factor family: identification of a fourth molecular species and characterization of alternative splicing of RNA. Mol Endocrinol 1991; 5: 1806-1814.
  64. Goldman C.K., Tsai J.-C., Soroceanu L., Gillespie G.Y. Loss of Vascular Endothelial Growth Factor in Human Alopecia Hair Follicles. J Invest Dermatol 1995; 104 (5 Suppl): 18S-20S.
  65. Ballaun C., Weninger W., Uthman A. et al. Human keratinocytes express the three major splice forms of vascular endothelial growth factor. J Invest Dermatol 1995; 104: 7-10.
  66. Weninger W., Uthman A., Pammer J. et al. Vascular endothelial growth factor production in normal epidermis and in benign and malignant epithelial skin tumors. Lab Invest 1996; 75: 647-57.
  67. Lachgar S., Moukadiri H., Jonca F. et al. Vascular endothelial growth factor is an autocrine growth factor for hair dermal papilla cells. J Invest Dermatol 1996; 106: 17-23.
  68. Kozlowska U., Blume-Peytavi U., Kodelja V. et al. Expression of vascular endothelial growth factor (VEGF) in various compartments of the human hair follicle. Arch Dermatol Res 1998; 290: 661-668.
  69. Man X.-Y., Yang X.H., Cai S.Q. et al. Expression and localization of vascular endothelial growth factor and vascular endothelial growth factor receptor-2 in human epidermal appendages: a comparison study by immunofluorescence. Clin Exp Dermatol 2009; 34: 396-401.
  70. Yano K., Brown L.F., Detmar M. Control of hair growth and follicle size byVEGF-mediated angio-genesis. J Clin Invest 2001; 107: 409-17.
  71. Ozeki M., Tabata Y. In vivo promoted growth of mice hair follicles by the controlled release of growth factors. Biomaterials 2003; 24: 2387-94.
  72. Bartels N.G., Jahnke I., Patzelt A. et al. Hair shaft abnormalities in alopecia areata evaluated by optical coherence tomography. Skin Res Technol 2011; 17: 201-205.
  73. Kim M.J., Lim C., Lee J.Y. et al. Visible-to-near IR quantum dot-based hypermulticolor highcontent screening of herbal medicines for the efficacy monitoring of hair growth promoting and hair loss inhibition. J Biomol Screen 2013; 18: 462-73.
  74. Wu X.-J. et al. VEGF165 modulates proliferation, adhesion, migration and differentiation of cultured human outer root sheath cells from central hair follicle epithelium through VEGFR-2 activation in vitro. J Dermatol Sci 2014; 73 (2): 152-60.
  75. Li W., Lu Z.-F., Man X.-Y. et.al. VEGF upregulates VEGF receptor-2 on human outer root sheath cells and stimulates proliferation through ERK pathway. Mol Biol Rep 2012; 39: 8687-8694.
  76. Simonetti O., Lucarini G., Bernardini M.L. et al. Expression of vascular endothelial growth factor, apoptosis inhibitors (survivin and p16) and CCL27 in alopecia areata before and after diphencyprone treatment: an immunohistochemical study. British J of Dermatol 2004; 150: 940-948.
  77. Massague J., Chen Y.G. Controlling TGF-beta signaling. Genes Dev 2000; 14: 627-644.
  78. Feng X.H., Derynck R. Specificity and versatility in tgf-beta signaling through Smads. Annu Rev Cell Dev Biol 2005; 21: 659-693.
  79. Fei T., Chen Y.G. Regulation of embryonic stem cell self-renewal and differentiation by TGF-beta family signaling Science China, Life Sci 2010; 53: 497-503.
  80. Klopcic B., Maass T., Meyer E. et al. TGF-beta superfamily signaling is essential for tooth and hair morphogenesis and differentiation. Eur J Cell Biol 2007; 86: 781-799.
  81. Inoue K., Aoi N., Yamauchi Y. et al. TGF-_2 is specifically expressed in human dermal papilla cells and modulates hair folliculogenesis. J Cell Mol Med 2009; 11-12 (13): 4643-4656.
  82. Schmid P., Cox D., Bilbe G. et al. Differential expression of TGF -1, -2, -3 genes during mouse embryogenesis. Development 1991; 111: 117-30.
  83. Millan F.A., Denhez F., Kondaiah P. et al. Embryonic gene expression patterns of TGFb1, b2 and b3 suggest different developmental functions in vivo. Development 1991; 111: 131-43.
  84. Stenn K.S., Paus R. Controls of hair follicle cycling. Physiol Rev 2001; 81: 449-94.
  85. Philpott M.P., Sanders D., Westgate G.E. et al. Human hair growth in vitro: a model for the study of hair follicle biology. J Dermatol Sci 1994; 7: S55-S72.
  86. Pi L.-Q., Jin X.-H., Hwang S.T. et al. Pro-apoptotic mechanism of TGF-beta in human hair follicle epithelial cells. 8th world congress for hair research. Abstract book. May 14-17, (2014): 45.
  87. Li J., Yang Z., Li Z. et al. Exogenous IGF-1 promotes hair growth by stimulating cell proliferation and down regulating TGF-β1 in C57BL/6 mice in vivo. Growth Hormone & IGF Research 2014; 24: 89-94.
  88. Soma T., Tsuji Y., Hibino T. Involvement of Transforming Growth Factor-b2 in Catagen Induction During the Human Hair Cycle. J Invest Dermatol 2002; 118 (6): 993-7.
  89. Song K., Wang H., Krebs T.L., Kim S.J., Danielpour D. Androgenic control of transforming growth factor^signaling in prostate epithelial cells through transcriptional suppression of transforming growth factor^receptor II. Cancer Res 2008; 68: 8173-8182.
  90. Hosgood G. Wound healing: the role of platelet-derived growth factor and transforming growth factor beta. Vet Surg 1993; 22: 490-5.
  91. Kamp H., Geilen C.C., Sommer C., Blume-Peytavi U. Regulation of PDGF and PDGF receptor in cultured dermal papilla cells and follicular keratinocytes of the human hair follicle. Exp Dermatol 2003; 12: 662-672.
  92. Ross R., Raines E.W., Bowen-Pope D.E. The biology of platelet derived growth factor. Cell 1986; 46: 155-69.
  93. Heldin C.H., Westermark B. Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev 1999; 79: 1283-316.
  94. Tomita Y., Akiyama M., Shimizu H. PDGF isoforms induce and maintain anagen phase of murine hair follicles. J Dermatol Sci 2006; 43: 105-115.
  95. Akiyama M., Smith L.T. Growth factor and growth factor receptor localization in the hair follicle bulge and associated tissue in human fetus. J Investig Dermatol 1996; 106: 391-6.
  96. Karlsson L., Bondjers C. Roles for PDGF-A and sonic hedgehog in development of mesenchymal components of the hair follicle. Development 1999; 126: 2611-21.
  97. Dupont J., Holzenberger M. Biology of insulin-like growth factors in development. Birth Defects Res C Embryo Today Rev 2003; 69: 257-271.
  98. Baker J., Liu J.-P., Robertson E.J., Efstratiadis A. Role of insulin-like growth factors in embryonic and postnatal growth. Cell 1993; 75: 73-82.
  99. Jones J.I., Clemmons D.R. Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev 1995; 16: 3-34.
  100. Weger N., Schlake T. IGF-I Signalling Controls the Hair Growth Cycle and the Differentiation of Hair Shafts. J Investig Dermatol 2005; 125: 873-882.
  101. Semenova E., Koegel H., Hasse S. et al. Overexpression of mIGF-1 in Keratinocytes improves wound healing and accelerates hair follicle formation and cycling in mice. Am J Pathol 2008; 173: 1295-1310.
  102. Panchaprateep R., Asawanonda P. Lower levels of insulin-like growth factor-1 and its binding proteins in balding scalps. 8th world congress for hair research. Abstract book. May 14-17, (2014) 20.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2015 Kubanov A.A., Gallyamova Y.A., Selezneva O.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 60448 от 30.12.2014.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies