Coamplification of Mycobacterium leprae genome sections by real-time PCR: Detection of the pathogen and the possibility of a semi-quantitative assessment of the bacterial load
- Authors: Verbenko D.A.1, Karamova A.E.1, Solomka V.S.1, Kubanov A.A.1, Deryabin D.G.1
-
Affiliations:
- State Research Center of Dermatovenereology and Cosmetology, Ministry of Health of the Russian Federation
- Issue: Vol 95, No 6 (2019)
- Pages: 22-28
- Section: ORIGINAL STUDIES
- Submitted: 26.01.2020
- Accepted: 26.01.2020
- Published: 26.12.2019
- URL: https://vestnikdv.ru/jour/article/view/529
- DOI: https://doi.org/10.25208/0042-4609-2019-95-6-22-28
- ID: 529
Cite item
Full Text
Abstract
Materials and methods. Skin scarification and biopsy samples from patient R. with a diagnosis of “A30.5 Leprosy. Multibacillary form. Lepromatous type. Active stage” were used as empirical material for the study. A search for M. leprae DNA in the clinical material was performed by the method of real-time PCR (RT-PCR) using primers and hydrolysis probes for the single-copy species-specific genes rpoB (encodes the β-subunit of bacterial RNA polymerase), sodA (encodes the superoxide dismutase enzyme) and mntH (encodes the manganese transport protein), as well as for RLEP — the non-coding repetitive element of the genome.
Results. Using various RT-PCR assays, consistent results were obtained concerning the presence or absence of M. leprae DNA in the studied clinical samples. The high sensitivity of PCR was confirmed for the detection of the repetitive element RLEP compared to the single-copy genes rpoB, sodA and mntH, which consists in reducing the number of amplification cycles (Ct) needed for exceeding the threshold fluorescence value of hydrolysis probes and leading to the maximum intensity of the fluorescence signal. When constructing standard graphs for calibrating the accumulation of a fluorescent signal for simultaneously analyzed portions of the M. leprae genome in dilutions from 1 to 1,000, significant differences in the results of co-amplification were noted depending on the quantitative presence of the DNA being detected.
Conclusion. Coamplification of M. leprae genome sections with varying degrees of copy number variation by the RTPCR method provides for effective detection of the M. leprae DNA in clinical material and forms a basis for a quantitative assessment of the bacterial load in skin scarification and biopsy samples.
Keywords
About the authors
D. A. Verbenko
State Research Center of Dermatovenereology and Cosmetology, Ministry of Health of the Russian Federation
Author for correspondence.
Email: verbenko@gmail.com
ORCID iD: 0000-0002-1104-7694
Cand. Sci. (Biol.), Acting Head, Department of the Laboratory Diagnostics of STIs and Dermatoses
Korolenko str., 3, bldg 6, Moscow, 107076, Russian Federation
A. E. Karamova
State Research Center of Dermatovenereology and Cosmetology, Ministry of Health of the Russian Federation
Email: fake@neicon.ru
ORCID iD: 0000-0003-3805-8489
Cand. Sci. (Med)., Head of the Department of Dermatology
V. S. Solomka
State Research Center of Dermatovenereology and Cosmetology, Ministry of Health of the Russian Federation
Email: fake@neicon.ru
ORCID iD: 0000-0002-6841-8599
Dr. Sci. (Biol.), Deputy Director for Research
A. A. Kubanov
State Research Center of Dermatovenereology and Cosmetology, Ministry of Health of the Russian Federation
Email: fake@neicon.ru
ORCID iD: 0000-0002-7625-0503
Dr. Sci. (Med.), Prof., Corresponding Member of the Russian Academy of Sciences, Acting Director
D. G. Deryabin
State Research Center of Dermatovenereology and Cosmetology, Ministry of Health of the Russian Federation
Email: fake@neicon.ru
ORCID iD: 0000-0002-2495-6694
Dr. Sci. (Biol.), Leading Researcher, Department of the Laboratory Diagnostics of STIs and Dermatoses
References
- Fischer M. Leprosy — an overview of clinical features, diagnosis, and treatment. J Dutsch Dermatol Ges. 2017;15(8):801–827.
- Ridley D. S., Jopling W. H. Classification of leprosy according to immunity. A five-group system. Int J Lepr Other Mycobact Dis. 1966;34(3):255–273.
- МКБ 10 — Международная классификация болезней 10-го пересмотра. Версия: 2019. https://mkb-10.com/index.php?pid=174
- World Health Organization. Regional Office for South-East Asia, Global Leprosy Programme. Global leprosy strategy 2016–2020: monitoring and evaluation guide accelerating towards a leprosy-free world. New Delhi: WHO Regional Office for South East Asia; 2017. http://apps.who.int/iris/bitstream/handle/10665/254907/9789290225492
- Образцова О. А. Молекулярно-биологические методы исследования в лабораторной диагностике лепры: эпидемиологический анализ, генетические детерминанты резистентности к антимикробным препаратам. Вестник дерматологии и венерологии. 2017;6:34–40.
- Cho S. N., Yanagihara D. L., Hunter S. W., Gelber R.H., Brennan P. J. Serological specificity of phenolic glycolipid 1 from M. leprae and use in serodiagnosis of leprosy. Infect Immun. 1983;41(3):1077–1083.
- Duthie M. S., Balagon M. F., Maghanoy A., Orcullo F. M., Cang M., Dias R. F. et al. Rapid quantitative serological test for detection of infection with Mycobacterium leprae, the causative agent of leprosy. J Clin Microbiol. 2014:52(2):613–619.
- Fujiwara T., Hunter S. W., Cho S. N., Aspinall G. O., Brennan P. J. Chemical synthesis and serology of the disaccharides and trisaccharides of phenolic glycolipid antigen from leprosy bacillus and preparation of a disaccharide protein conjugate for serodiagnosis of leprosy. Infect Immun. 1984;43(1):245–252.
- Santos A. R., De Miranda A. B., Sarno E. N., Suffys P. N., Degrave W. M. Use of PCR-mediated amplification of Mycobacterium leprae DNA in different types of clinical samples for the diagnosis of leprosy. J Med Microbiol. 1993;39(4):298–304.
- Martinez A. N., Talhari C., Moraes M. O., Talhari S. PCR-based techniques for leprosy diagnosis. From the laboratory to the clinic. PLoS Negl Trop Dis. 2014;8(4):e2655. doi: 10.1371/journal.pntd.0002655
- Pathak V. K., Singh I., Turankar R. P., Lavania M., Ahuja M., Singh V. et al. Utility of multiplex PCR for early diagnosis and household contact surveillance for leprosy. Diagn Microbiol Infect Dis. 2019;95(3):114855. doi: 10.1016/j.diagmicrobio.2019.06.0078
- Turankar R. P., Pandey S., Lavania M., Singh I., Nigam A., Darlong J. et al. Comparative evaluation of PCR amplification of RLEP, 16S rRNA, rpoT and SodA gene targets for detection of Mycobacterium leprae DNA from clinical and environmental samples. Int J Mycobacteriol. 2015;4(1):54–59.
- Azevedo M. C., Ramuno N. M., Fachin L. R., Tassa M., Rosa P. S., Belone A. F. et al. qPCR detection of Mycobacterium leprae in biopsies and slit skin smear of different leprosy clinical forms. Braz J Infect Dis. 2017;21(1):71–78. doi: 10.1016/j.bjid.2016.09.017
- Образцова О. А., Вербенко Д. А., Карамова А. Э., Семенова В. Г., Кубанов А. А., Дерябин Д. Г. Совершенствование ПЦР-диагностики лепры путем амплификации видоспецифичного повторяющегося фрагмента генома Mycobacterium leprae. Клиническая лабораторная диагностика. 2018;63(8):511–516. doi: 10.18821/0869-2084-2018-63-8-511-516
- Woods S. A., Cole S. T. A family of dispersed repeats in Mycobactenium leprae. Mol Microbiol. 1990;4:1745–1751.
- Martinez A. N., Lahiri R., Pittman T. L., Scollard D., Truman R., Moraes M.O. et al. Molecular determination of Mycobacterium leprae viability by use of real-time PCR. J Clin Microbiol. 2009;47(7):2124–2130.
- Chaitanya V. S., Cuello L., Das M., Sudharsan A., Ganesan P., Kanmani K. et al. Analysis of a novel multiplex polymerase chain reaction assay as a sensitive tool for the diagnosis of indeterminate and tuberculoid forms of leprosy. Int J Mycobacteriol. 2017;6(1):1–8.
- Banerjee S., Sarkar K., Gupta S., Mahapatra P. S., Gupta S., Guha S. et al. Multiplex PCR technique could be an alternative approach for early detection of leprosy among close contacts: a pilot study from India. BMC Infect Dis. 2010;10:252.