Genetic variations of C. trachomatis and search of virulence factors

Abstract

Represents results of research, dedicated to the search of genetically determined factors of С. trachomatis virulence. Data of papers, studying features of С. trachomatis genetic variations was highlighted.

Full Text

Генетические варианты С. trachomatis и поиск факторов вирулентности
×

References

  1. Centers for Disease Control and Prevention. Sexually Transmitted Disease Surveillance, 2010. Atlanta, GA: U.S. Department of Health and Human Services, 2011.
  2. Fenton K.A., Mecer C.H., Johnson A.M. et al. Reported sexually transmitted disease clinc attendance and sexually transmitted infections in Britain: prevalence, risk factors, and proportionate population burden. J infect Dis 2005; 191, S 127-138.
  3. Wren BW. Microbial genome analysis: insights into virulence, host adaptation and evolution. Nat Rev Genet 2000 Oct;1(1):30-9.
  4. Schachter J. Chlamydia: Intracellular biology, pathgenesis and immunity, American Society of Microbiology Press, Washington D.C. 1999.
  5. Millman K, Black CM, Johnson RE et al. Population-based genetic and evolutionary analysis of Chlamydia trachomatis urogenital strain variation in the United States. J Bacteriol 2004; 186:2457-2465.
  6. Stephens RS, Kalman S, Lammel C et al.Genomic sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science1998;282:754-759.
  7. Comanducci M., Ricci S., Cevenini R. et al. Diversity of the Chkamydia trachomatis common plasmid in biovars with different pathogenicity. Plasmid 1990; 23 :149-154.
  8. Thomas N.S., Lusher M., Storey C.C. et al. Plasmid diversity in Chlamydia. Microbiology 1996 Jun; 143 (Pt6), 1847-1854.
  9. Carlson JH, Whitmore WM, Crane DD et al. The Chlamydia trachomatis plasmid is a transcriptional regulator of chromosomal genes and a virulence factor. Infect Immun 2008; 76: 2273-2283.
  10. Comanducci M, Cevenini R, Moroni A et al. Expression of a plasmid gene of Chlamydia trachomatis encoding a novel 28 kDa antigen. J Gen Microbiol1993;139:1083-1092.
  11. O’Connell CM, Ingalls RR, Andrews CW Jr et al. Plasmid-deficient Chlamydia muridarum fail to induce immune pathology and protect against oviduct disease. J Immunol 2007;179: 4027-4034.
  12. Peterson EM, Markoff BA, Schachter J et al. The 7.5 kb plasmid present in Chlamydia trachomatis is not essential for the growth of this microorganism. Plasmid 1990;23:144-148.
  13. Stothard DR, Williams JA, Van Der Pol B et al. Identification of a Chlamydia trachomatis serovar E urogenital isolate which lacks the cryptic plasmid. Infect Immun 1998;66:6010-6013.
  14. Hatch T.P., Vance D.W., Al-Hossainy Y. Identification of a major envelope proeine in Chlamydia spp. 1981. J Bacteriol, 146, 426-429.
  15. Salari S.H. and Ward M.E. Polypeptide composition of Chlamydia trachomatis. J Gen Microbiol 1981; 123: 197-207.
  16. Caldwell H.D., Kromhout J., Schachter J. Purification and partial characterization of the major outer membrane protein of Chlamydia trachoamtis. Infect Immun 1981; 31: 1161-1176.
  17. Dean D., Bruno W.J., Wan R. et al. Predicting phenotype and emrging strains among Chlamydia trachomatis infections. J of Bacteriology 2004; 186 (13): 4295-11.
  18. Jalal H, Verlander NQ, Kumar N et al. Genital chlamydial infection: association between clinical features, organism genotype and load.J Med Microbiol 2011 Jul;60(Pt 7):881-8.
  19. Brunelle GW, Sensabough GF. The ompA gene in Chlamydia trachomatis differs in phylogeny and rate of evolution from other regions of the genome. Infect Immun 2006;74:578-585.
  20. Millman K., Black C.M., Johnson R.E., et al. Population-based genetic and evolutionary analysis of Chlamydia trachomatis urogenital strain variation in the United States, J Bacteriol 2004; 2457-9.
  21. Geisler W.M., Suchland R.J., Whittington W.L. et al. The relationship of serovar to clinical manifestations of urogenital Chlamydia trachomatis infection. Sex Transm Dis 2003; 30(2):160-5.
  22. Morre S.A., Rozendaal L., Van Valkengoed I.G. et al. Urogenital Chlamydia trachomatis serovars in men and women with a symptomatic or asymptomatic infection: an association with clinical manifestations? J Clin Microbiol 2000; 38(6):2292-6.
  23. Dean D., Oudens E., Bolan G., Padian N., Schachter J. Major outer membrane protein variants of Chlamydia trachomatis are associated with severe upper genital tract infections and histopathology in San Francisco. J Infect Dis 1995; 172(4):1013-22.
  24. Byrne G. I. Chlamydia trachomatis strains and virulence: rethinking links to infection prevalence and disease severity. J Infect Dis 2010; June 15; 201(Suppl 2): S126-S133.
  25. Gomes JP, Bruno WJ, Nunes A et al. Evolution of Chlamydia trachomatis diversity occurs by widespread interstrain recombination involving hotspots. Genome Res 2008;17:50-60.
  26. Stothard D.R. Use of a reverse dot blot procedure to identify the presence of multiple serovars in Chlamydia trachomatis urogenital infection. J Clin Microbiol 2001; 39:2655-2659.
  27. Spaaragen J., Verhaest I., Mooi J.S. et al. Analysis of Chlamydia trachomatis. Serovar distribution changes in the Netherlands (1986-2002). Sex Transm Infect 2005; 80: 151-152.
  28. Lister N.A., Faitley C.K. C. trachomatis serovars causing urogenital infections in women in Melbourne, Australia. J Clin Microbiol 2005; 43:2546-2547.
  29. Jurstrand M., Falk L., Fredlund H., Lindberg M., Olcen P., Andersson S., Persson K., Albert J., and Backman A. Characterization of Chlamydia trachomatis omp1 Genotypes among Sexually Transmitted Disease Patients in Sweden. J Clin Microbiol 2001; 39 (11): 3915-3919.
  30. Mossman D., Beagley K.W., Landay A.L. et al. Genotyping of Urogenital Chlamydia trachomatis in Regional New South Wales, Australia. Sex Trans Dis 2008; 35 (6): 614-4.
  31. Lister N.A, Tabrizi SN, Fairley CK et al. Variability of the Chlamydia trachomatis opm1 gene detected in sampales from men tested in maleonly saunas in Melbourne, Australia. J of Clin Microbiol 2004; 2596-2601.
  32. Geisler W.M., Whittington W.L., Suchland R.J. et al. Epidemiology of anorectal chlamydial and gonococcal infections among men having sex with men in Seattle: utilizing serovar and auxotype strain typing. Sex Transm Dis 2002 Apr; 29(4):189-95
  33. Swanson K.A., Taylor L.D., Frank S.D. et al. Chlamydia trachomatis polymorphic membrane protein D is an oligomeric autotransporter with a higher-order structure. Infect Immun 2009;77:508-516.
  34. Tan C., Spitznagel J.K., Shou H-Z., Hsia R-C. et al. The polymorphic membrane protein gene family of the chlamydiaceae Chlamydia Genomics and Pathogenesis. Bavoil, PM.; Wyrick, PB., editors. Horizon Bioscience; Norfolk, UK: 2006; 195-218.
  35. Henderson I.R., Navarro-Garcia F., Nataro J.P. The great escape: Structure and function of autotransporter proteins. Trends Microbiol 1998;6:370-378.
  36. Henderson I.R., Nataro J.P. Virulence functions of autotransporter proteins. Infect Immun 2001;69:1231-1243.
  37. Stephens R.S., Kalman S., Lammel C. et al. Genomic sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 1998; 282:754-759.
  38. Rockey DD, Lenart J, Stephens RS. Genome sequencing and our understanding of chlamydiae. Infect Immun 2000;68:5473-5479.
  39. Swanson KA, Taylor LD, Frank SD, Sturdevant GL, Fischer ER, Carlson JH, Whitmore WM, Caldwell HD. Chlamydia trachomatis polymorphic membrane protein D is an oligomeric autotransporter with a higher-order structure. Infect Immun 2009;77:508-516.
  40. Stothard D.R., Toth G.A., Batteiger B.E. Polymorphic membrane protein H has evolved in parallel with the three disease-causing groups of Chlamydia trachomatis. Infect Immun 2003;71:1200-1208
  41. Gomes JP, Nunes A, Bruno WJ, Borrego MJ, Florindo C, Dean D. Polymorphisms in the nine polymorphic membrane proteins of Chlamydia trachomatis across all serovars: evidence for serovar Da recombination and correlation with tissue tropism. J Bacteriol. 2006;188:275-286
  42. Cornelis GR, Van Gijsegem F. Assembly and function of type III secretion systems. Annu Rev Microbiol. 2000;54:735-774.
  43. Subtil A, Blocker A, Dautry-Varsat A. Type III secretion system in Chlamydia species: identified members and candidates. Microbes and Infect 2000;2:367-369.
  44. Hefty S.P., Stephens R.S. Chlamydial type III secretion system is encoded on ten operons preceded by sigma 70-like promoter elements. J Bacteriol 2007;189:198-206.
  45. Fields K.A., Hackstadt T. Evidence for the secretion of Chlamydia trachomatis CopN by a type III secretion mechanism. Mol Microbiol 2000;38:1048-1060.
  46. Betts H.J., Twiggs L.E., Sal M.S. et al. Bioinformatic and biochemical evidence for the identification of the type III secretion system needle protein of Chlamydia trachomatis. J Bacteriol 2008;190:1680-1690.
  47. Fields K.A., Fisher E.R., Mead D.J. et al. Analysis of putative Chlamydia trachomatis chaperones Scc2 and Scc3 and their use in the identification of type III secretion substrates. J Bacteriol 2005;187:6466-6478.
  48. Bannantine J.P., Griffiths R.S., Viratyosin W. et al. A secondary structure motifpredictive of protein localization to the chlamydial inclusion membrane. Cell Microbiol 2000;2: 35-47.
  49. Rockey D.D., Lenart J., Stephens R.S. Genome sequencing and our understanding of chlamydiae. Infect Immun 2000;68:5473-5479.
  50. Suchland R.J., Rockey D.D., Bannantine J.P. et al. Isolates of Chlamydia trachomatis that occupy nonfusogenic inclusions lack IncA, a protein localized to the inclusion membrane. Infect Immun 2000; 68: 360-367.
  51. Geisler W.M., Suchland R.J., Rockey D.D. et al. Epidemiology and clinical manifestations of unique Chlamydia trachomatis isolates that occupy nonfusogenic inclusions. J Infect Dis 2001;184:879-884.
  52. Карягина А.С., Алексеевский А.В., Спирин С.А. и др. Эффекторные белки хламидий. Мол биол 2009; 6: 963-983.
  53. Sturdevant G. L., Kari L., Gardner D.J. et al. Frameshift Mutations in a Single Novel Virulence Factor Alter the In Vivo Pathogenicity of Chlamydia trachomatis for the Female Murine Genital Tract Infect Immun. 2010 September; 78(9): 3660-3668.
  54. Al-Zeer, M. A., Al-Younes H. M., Braun H. P. et al. IFN-gamma inducible Irga6 mediates host resistance against Chlamydia trachomatis via autophagy. PLoS One 2009; 4:e4588.
  55. Belland, R. J., Nelson D. E., Virok D. et al. Transcriptome analysis of chlamydial growth during IFN-gamma-mediated persistence and reactivation. Proc Natl Acad Sci USA 2003; 100:15971-15976.
  56. Lutter E.I., Bonner C., Holland M.J. et al. Phylogenetic Analysis of Chlamydia trachomatis Tarp and Correlation with Clinical Phenotype. Infect Immun 2010 Sept; 78: 9: 3678-3688.
  57. LaVerda D., Albanese L.N., Ruther P.E. et al. Seroreactivity to Chlamydia trachomatis HSP10 correlates with disease severity in women. Infect Immun 2000; 68: 303-309.
  58. Kinnunen A., Molander P., Morrison R. et al.Chlamydial heat shock protein 60-specific T cells in inflamed salpingeal tissue. Fertil Steril 2002;77:162-172.
  59. Kol A., Lichtman A.H., Finberg R.W. et al. Heat shock protein (HSP)60 activates theinnate immune response: CD14 is an essential receptor for HSP60 activation of mononuclear cells. J Immunol 2000;164:13-17.
  60. Gerard H.C., Whittum-Hudson J.A., Schumacher H.R. et al. Differential expression of three Chlamydia trachomatis hsp60-encoding genes in active vs. persistent infections. Microb Pathog 2004 Jan;36:1:35-9.
  61. Belland RJ, Zhong G, Crane DD, Hogan D, Sturdevant D, Sharma J, Beatty WL, Caldwell HD: Genomic transcriptional profiling of the developmental cycle of Chlamydia trachomatis. Proc Nat Acad Sci USA 2003; 100:14:8478-8483.
  62. Klint M., Thollesson M., Bongcam-Rudloff E. et al. Mosaic structure of intragenic repetitive elements in histone H1-like protein Hc2 varies within serovars of Chlamydia trachomatis. BMC Microbiology 2010; 10:81.
  63. Rodgers A.K., Budrys N.M., Gong S. et al. Genome-wide identification of Chlamydia trachomatis antigens associated with tubal factor infertility. Fertil Steril 2011 Sep;96(3):715-21.
  64. Jeffrey B.M., Suchland R.J., Quinn K.L. et al. Genome sequencing of recent clinical Chlamydia trachomatis strains identifies loci associated with tissue tropism and regions of apparent recombination. Infect Immun 2010 Jun;78(6):2544-53.

Statistics

Views

Abstract: 878

PDF (Russian): 608

Article Metrics

Metrics Loading ...

Dimensions

PlumX

Refbacks

  • There are currently no refbacks.

Copyright (c) 2012 PLAKHOVA K.I., KOZHUSHNAYA O.S., RAHMATULINA M.R., FRIGO N.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies