Functions of Toll-like receptors as an inborn immunity component and their participation in the pathogenesis of dermatoses of different etiologies

Abstract


In addition to serving as a mechanical barrier protecting our organism from the damaging effect of different factors, our skin also takes part in immune reactions developing in case of microbial intervention. Toll-like receptors (TLR) mediating recognition of molecular structures of pathogens are expressed in skin cells of different types initiating the development of adaptive immune reactions when associated with different ligands. The review presents data on the structure and functions of TLR, their localization in skin compartments and their role in the pathogenesis of skin diseases being of infectious etiology and non-infectious origin.

About the authors

O R KATUNINA

Email: katunina@cnikvi.ru

References

  1. Clark R., Kupper T. Old meets new: the interaction between innate and adaptive immunity. J Invest Dermatol 2005; 125: 4: 629-37.
  2. Хаитов Р.М., Игнатьева Г.А., Сидорович И.Г. Иммунология. Норма и патология: Учебник. 3-е изд., перераб. и доп. М.: ОАО «Издательство «Медицина», 2010.
  3. Лебедев К.А., Понякина И.Д. Иммунология образраспознающих рецепторов (интегральная иммунология). М.: Книжный дом «ЛИБРОКОМ», 2009; 256.
  4. Gibson J., Gow N., Wong S.Y. Expression and Funktion of innate Pattent Recognition Receptors in T and B cells. Immun., Endoc &Metab. Agents in Med Chem 2010; 10: 11-20.
  5. Takeda K., Kaisho T., Akira S. Toll-like receptors. Annu Rev Immunol 2003; 21: 335-76.
  6. Толстопятова М.А., Буслаева Г.А., Козлов И.Г. Роль рецепторов врожденного иммунитета в развитии инфекционной патологии у новорожденных детей. Педиатрия 2009; 87: 1: 115-120.
  7. Меджитов Р., Джаневей Ч. Врожденный иммунитет. Казанский медицинский журнал 2004; 85: 3: 161-67.
  8. Janeway C.A. Approaching asymptome? Evolution and revolution in immunology. Cold. Spring. Harb. Symp Quant Biol 1989; 54: 1-13.
  9. Medzhitov R. Toll-like receptors and innate immunity. Nature Reviews Immunology 2001; 1: 1:135-145.
  10. Takeda K., Akira S. Toll-receptors in innate immunity. International Immunology 2005; 17: 1: 1 - 14.
  11. Быкова В.П., Калинин Д.В. Иммунный барьер слизистых оболочек в современном прочтении: Клиническая лекция. Рос. ринол. 2009; 1: 40-42.
  12. Kawasaki K., Akashi S., Shimazu R. et al. Mouse Toll-like receptor 4-MD-2 complex mediates lipopolysaccharide-mimetic signal transduction by Taxol. J Biol Chem 2000; 275: 2251-60.
  13. Sabroe R.F., Read R.C., Whyte M.K.B. et al. Toll-like receptors in health and disease: complex questions remain. Immunol 2003; 171: 1630-38.
  14. Jared B., Chisholm D., Lebet L. et al. House dust extracts elicit Tolllike receptor-dependent dendritic cell responses. J Allergy Clin Immunol 2005; 116: 1: 185-191.
  15. Schmidt M., Raghavan B., Müller V. et al. Crucial role for human Toll-like receptor 4 in the development of contact allergy to nickel. Nature Immunol 2010; 11: 814-19.
  16. Ohashi K., Burkart V., Flohe S., Kolb H. Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor 4 complex. J Immun 2000; 164: 558-61.
  17. Okamura Y., Watari M., Jerud E.S. et al. The extra domain A of fibronectin activates Toll-like receptor 4. J Biol Chem 2001; 276: 10229-33.
  18. Sabroe R.F., Read R.C., Whyte M.K. et al. Toll-like receptors in health and disease: complex questions remain. Immunol 2003; 171: 1630-38.
  19. Smiley S.T., King J.A., Hancock W.W. Fibrinogen stimulates macrophage chemokine secretion through toll-like receptor 4. J Immun 2001; 167: 2887-94.
  20. Симбирцев А.С. Толл-белки: специфические рецепторы неспецифического иммунитета. Иммунология 2005; 6: 368-77.
  21. Хаитов Р.М., Пащенков М.В., Пинегин Б.В. Роль паттерн- распознающих рецепторов во врожденном и адаптивном иммунитете. Иммунология 2009; 1: 66-76.
  22. Hansson G.K., Edfeldt K. Toll to be Paid at the gateway to the vessel wall. Arterioscler. Thromb Vasc Biol 2005; 25: 1085-87.
  23. Lemaitre B., Nicolas E., Michaut L., Reichhart J.M., Hoffman J.A. The dorso-ventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 1996; 86: 973-83.
  24. Medzhitov R., Preston-Hurlburt P., Janeway C.A. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 1997; 388: 394-97.
  25. Takeuchi O., Akira S. Pattern Recognition Receptors and Inflammation. Cell 2010; 140: 805-820.
  26. Pеlsson-McDermott E.M. and O'Neill L.A.J. Building an immune system from nine domains. Biochemical Society Transactions 2007; 35: 6: 1437-1444.
  27. Valins W., Amini S., Berman B. The Expression of Toll-like Receptors in Dermatological Diseases and the Therapeutic Effect of Current and Newer Topical Toll-like Receptor Modulators. J Clin Aes- thet Dermatol 2010; 3: 9: 20-29.
  28. Xiang M., Fan J. Pattern Recognition Receptor-Dependent Mechanisms of Acute Lung Injury. Molmed 2010; 16: 1-2: 69-82.
  29. Cario E. Toll-like Receptors in Inflammatory Bowel Diseases: A Decade Later. Inflamm. Bowel Dis 2010; 16: 1583-1597
  30. O'Brien A., Rosenstreich D., Scherl et al. Genetic control of susceptibility to Salmonela typhimurium in mice: role of the LPS gene. J Immun 1990; 124: 20-24.
  31. Netea M.G., Van Der Graaf C., Vonk A. et al. The role of Toll-like receptors in the defense against disseminated candidiasis. J Infect Dis 2002; 185: 1483-89.
  32. Latz E., Visintin A., Espevik T., Golenbock D. Mechanisms of TLR9 activation. J Endotoxin Res 2004; 10: 406-12.
  33. Щебляков Д.В., Логунов Д.Ю., Тухватулин А.И. Шмаров М.М. и соавт. Толл-подобные рецепторы (TLR) и их значение в опухолевой прогрессии. Acta Naturae 2010; 2: 3(6): 28-37.
  34. Kawai T., Akira S. TLR signaling. Semin Immunol 2007; 19: 1: 24-32.
  35. Claudine R.R., Wilkie B.N. Toll-like receptor, MHC II, B7 and cytokine expression by porcine monocytes and monocyte-derived dendritic cells in response to microbial pathogen-associated molecular patterns. Vet Immunol. Immunopathol 2005; 107: 3: 23247-56.
  36. Kokkinopoulos I., Jordan W.J., Ritter M.A. Toll-like receptor mRNA expression patterns in human dendritic cells and monocytes. Mol Immunol 2005; 42: 8: 957-968.
  37. Sabroe I., Jones E.C., Usher L.R. et al. Toll-like receptor (TLR2) and TLR4 in human peripheral blood granulocytes: a critical role for monocytes in leukocyte lipipolysaccharide responses. J Immun 2002; 168: 4701 - 10.
  38. Plotz S.G., Lentschat A., Beherendt H. еt al. The interaction of human peripheral blood eosinophils with bacterial lipipolysaccharide is CD14 dependent. Blood 2001; 97: 235-41.
  39. Wong C.K., Cheung P.F.Y., Ip W.K., Lam C.W.K. Intracellular signaling mechanisms regulating toll-like receptor-mediated activation of eosinophils. Am J. Respir. Cell Mol Biol 2007; 37: 85-96.
  40. Supajatura V., Ushio H., Nakao et al. Protective roles of mast cells against enterobacterial infection are mediated by toll-like receptor 4. J Immun 2001; 167: 2250-56.
  41. Vliagoftis H., Befus A.D. Rapidly changing perspectives about mast cells at mucosal surfaces. Immunol Rev 2005; 206: 190-203.
  42. Sobek V., Birkner N., Falk I. et al. Direct Toll-like receptor 2 mediated co-stimulation of T cells in the mouse system as a basis for chronic inflammatory joint disease. Arthritis Res Ther 2004; 6: 5: 433-46.
  43. Tabiasco J. Devêvre E., Rufer N. et al. Human effector CD8+ T-lymphocytes express TLR3 as a functional coreceptor. J Immun 2006; 177: 8708-13.
  44. Treml L.S., Carlesso G., Hoek K.L. et al. TLR stimulation modifies BLyS receptor expression in follicular and marginal zone B cells. J Immun 2007; 178: 7531-39.
  45. Takeda K., Akira S. Toll-like receptors in innate immunity. Intern Immunol 2005; 17: 1: 1-14.
  46. Hayashi F., Shmith K.D., Ozinsky A. et al. The innate immune response to bacterial flagellin is mediated Toll-like receptor 5. Nature 2001; 410: 1099-1103.
  47. Marshak-Rothstein A. Toll-like receptors in systemic autoimmune disease. Nat. Rev. Immunol 2006; 6: 823-35.
  48. Rifkin I.R., Leadbetter E.A., Busconi L. et al. Toll-like receptors, endogenous ligands, and systemic autoimmune disease. Immunol Rev 2005; 204: 27-42.
  49. Akira A., Takeda K. Toll-like receptor signaling. Nat Rev Immun 2004; 4: 499-511.
  50. Renn C.N., Sanchez D.J., Ochoa M.T. et al., TLR activation of langerhans cell-like dendritic cells triggers an antiviral immune response. J of Immunol 2006; 177: 1: 298-305.
  51. James E., Mclnturff R., Modlin J. K. The role of toll-like receptors in the pathogenesis and treatment of dermatological disease. J Invest Dermatol 2005; 1: 1-8.
  52. Begon E., Michel L., Flageul B., Beaudoin I. et al. Expression, subcellular localization and cytokinic modulation of Toll-like receptors (TLRs) in normal human keratinocytes: TLR2 up-regulation in psoriatic skin. Eur J Dermatol 2007. 17: 6: 497-506.
  53. Baker B.S., Ovigne J.M., Powles A.V. et al Normal keratinocytes express Toll-like receptors (TLRs) 1, 2 and 5: Modulation of TLR expression in chronic plaque psoriasis. Br J Dermatol 2003; 148: 670-679.
  54. Pivarcsi A., Bodai L., Rethi B. et al. Expression and function of Tolllike receptors 2 and 4 in human keratinocytes. Int Immunol 2003; 15: 721-730.
  55. Mempel M., Voelcker V., Kollisch G. et al: Toll-like receptor expression in human keratinocytes: Nuclear factor kappaB controlled gene activation by Staphylococcus aureus is toll-like receptor 2 but not toll-like receptor 4 or platelet activating factor receptor dependent. J Invest Dermatol 2003; 121: 1389-1396.
  56. Akira S., Takeda K., Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nature Immunol 2001; 2: 675-680.
  57. Kim J., Ochoa M.T., Krutzik S.R., Takeuchi O. et al. Activation of toll-like receptor 2 in acne triggers inflammatory cytokine responses. J Immunol 2002; 169: 3: 1535-41.
  58. Arancibia S.A., Caroll J. B., Aguirre I. M., Silva P. et al. Toll-like Receptors are Key Participants in Innate Immune Responses. Biol Res 2007; 40: 97-112.
  59. Miller L.S. Toll-like receptors in skin. Adv Dermatol 2008; 24: 71-87.
  60. Lai Y., Gallo R.L. Toll-like receptors in skin infections and inflammatory diseases. Infect Disord Drug Targets 2008; 8: 3: 144-155.
  61. Liu P.T., Krutzik S.R., Kim J., Modlin R.L. Cutting edge: all-trans retinoic acid down-regulates TLR2 expression and function. J. Immunol 2005; 174: 5: 2467-70.
  62. Tenaud I., Khammari A., Dreno B. In vitro modulation of TLR-2, CD1d and IL-10 by adapalene on normal human skin and acne inflammatory lesion. Exp. Dermatol. 2007; 16: 6: 500-06.
  63. Jugeau S., Tenaud I., Knol A.C. et al. Induction of toll-like receptors by Propionibacterium acnes. Br J Dermatol 2005; 153: 6: 1105-1113.
  64. Jouault T., Ibata-Ombetta S., Takeuchi O., Trinel P.A. et al. Candida albicans phospholipomannan is sensed through toll-like receptors. J Infect Dis 2003; 188: 1: 165-72.
  65. Netea M.G., Gow N.A., Munro C.A., Bates S. et al. Immune sensing of Candida albicans requires cooperative recognition of mannans and glucans by lectin and Toll-like receptors. J Clin Invest 2006; 116: 6: 1642-50.
  66. Barton G.M. Viral recognition by Toll-like receptors. Semin Immunol 2007; 19: P. 33-40.
  67. Wang J.P., Kurt-Jones E.A., Shin O.S., Manchak M.D. et al. Varicella-zoster virus activates inflammatory cytokines in human monocytes and macrophages via Toll-like receptor 2. J Virol 2005; 79: 20: 12658-66.
  68. Sato A., Linehan M.M., Iwasaki A. Dual recognition of herpes simplex viruses by TLR2 and TLR9 in dendritic cells. Proc Natl Acad Sci USA 2006; 103: 46: 17343-48.
  69. Aravalli R.N., Hu S., Rowen T.N., Palmquist J.M. et al. Cutting edge: TLR2-mediated proinflammatory cytokine and chemokine production by microglial cells in response to herpes simplex virus. J Immunol 2005; 175: 7: 4189-93.
  70. Lund J.M., Linehan M.M., Iijima N., Iwasaki A. Cutting edge: Plasmacytoid dendritic cells provide innate immune protection agaist mucosal viral infection in situ. J Immunol 2006; 177: 11: 7510-14.
  71. Bochud P.Y., Magaret A.S., Koelle D.M. Aderem A. et al. Polymorphisms in TLR2 are associated with increased viral shedding and le- sional rate in patients with genital herpes simplex virus Type 2 infection. J Infect Dis 2007; 196: 4: 505-09.
  72. Zhang S.Y., Jouaguy E., Ugolini S., Smahi A. et al. TLR3 deficiency in patients with herpes simplex encephalitis. Science 2007; 317: 1522-27.
  73. Walker S.L., Lockwood D.N., Leprosy. Clin Dermatol 2007; 25: 2: 165-172.
  74. Krutzik S.R., Ochoa M.T., Sieling P.A., Uematsu S. et al. Activation and regulation of Toll-like receptors 2 and 1 in human leprosy. Nat Med 2003; 9: 525-32.
  75. Bochud P.Y., Hawn T.R., Aderem A. Cutting edge: a Toll-like receptor 2 polymorphism that is associated with lepromatous leprosy is unable to mediate mycobacterial signaling. J Immunol 2003: 170: 7: 3451-54.
  76. Oliveira R.B., Ochoa M.T., Sieling P.A., Rea T.H. et al. expression of Toll-like receptor 2 on human Schwann cells: a mechanism of nerve damage in leprosy. Infect Immun 2003; 71: 3: 1427-33.
  77. Sieling P.A., Chung W., Duong B.T. et al. Toll-like receptor ligands as adjuvants for human Th1 responses. J Immuol 2003; 170: 194-200.
  78. Hertz C.J., Kiertscher S.M., Godowski P.J. et al. Microbial lipopeptides stimulate dendritic cell maturation via Toll-like receptor 2. J Immuol 2002; 166: 2444-50.
  79. Moors M.A., Li L., Mizel S.B. Activation of interleukin-I receptor associated kinase by gram-negative flagellin. Infect Immunol 2001; 69: 4424-29.
  80. Mizel S.B., Honko A.N. Moors M.A. et al. Induction of macrophage nitric oxide production by Gram-negative flagellin involves signaling via heteromeric Toll-like receptor5/ Toll-like receptor4 complex. J Immunol 2003;170: 6217-23.
  81. Means T.K., Luster A.D. Toll-like receptor activation in the pathogenesis of systemic lupus erythematosus. Ann N Y Acad Sci 2005; 1062: 242-51.
  82. Ronnblom L.E., Alm G.V., Oberg K.E. Autoimmunity after alphainterferon therapy for malignant carcinoid tumors. Ann Intern Med 1990; 115: 178-83.
  83. Ronnblom L.E., Alm G.V., Oberg K.E. Possible induction of systemic lupus erythematosus by interferon-alpha treatment in a patient with a malignant carcinoid tumour. J Intern Med 1990; 227: 207-10.
  84. Ehrestein M.R., McSweeney E., Sware M. et al. Appearance of anti- DNA antibodies in patients treated with interferon-alpha. Arthritis Rheum 1993; 36: 279-80.
  85. Ong P.Y., Ohtake T., Brandt C., Strickland I. et al. Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med 2002; 347: 1151-60.
  86. Текучева Л.В. Мониторинг стафилококковой микрофлоры у больных атопическим дерматитом / Текучева Л.В., Зайцева Е.В., Арзуманян В.Г. и др. Вестн. дерматол. и венерол. 2006; 5: 69-72.
  87. Глебова Н.С. Особенности микробиоценоза кожи и кишечника при экземе на фоне Blastocystis hominis. Дисс. ...канд. биол. наук. Ульяновск. 2007.
  88. Lorenz E., Mira J.P., Cornish K.L., Arbour N.C. et al. A novel polymorphism in the toll-like receptor 2 gene and its potencial association with staphylococcal infection. Infect Immun 2000; 68: 11: 6398-401.
  89. Novak N., Yu C.F., Bussman C., Maintz L. et al. Putative association of a TLR9 promoter polymorphism with atopic eczema. Allergy 2007; 62: 7: 766-72.
  90. Schimming T.T., Parwer Q., Petrasch-Parwez E., Nothnagel M. et al. Assotiation of toll-interacting protein gene polymorphisms with atopic dermatitis. BMC Dermatol 2007; 7: 3.
  91. Bеgone E., Michel L., Flageul B. et al. Expression, subcellular localization and cytokinic modulation of Toll-like receptors (TLRs) in normal human keratinocytes: TLR2 up-regulation in psoriatic skin. Eur J Dermatol 2007; 17; 6: 497-506.
  92. Curry J.L., Qin J.Z., Bonish B. et al: Innate immune-related receptors in normal and psoriatic skin. Arch Pathol Lab Med 2003; 127: 178-186.
  93. Miller L.S., Sorensen O.E., Liu P.T., Jalian H.R. et al. TGF-alpha regulates TLR expression and function on epidermal keratinocytes. J Immunol 2005; 174: 10: 6137-43.
  94. Fitzgerald K.A., O'Neill L.A. The role of the interleukin-1/Toll-like receptor superfamily in inflammation and host defence. Microbes Infect 2000; 2: 8: 933-43.
  95. Lande R., Gregorio J., Facchinetti V., Chatterjee B. et al. Plasma- cytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 2007; 449: 7162: 564-569.
  96. Фицпатрик Т., Джонсон Р., Вулф К. Дерматология. Атлас- справочник. 1088 с., 612 илл. Пер. с англ. Мак-Гроу-Хилл - «Практика».

Statistics

Views

Abstract - 623

PDF (Russian) - 309

PlumX

Article Metrics

Metrics Loading ...

Dimensions

Refbacks

  • There are currently no refbacks.

Copyright (c) 2011 KATUNINA O.R.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies