Role of polymorphism of the androgen receptor gene and non-random X chromosome inactivation in the genesis of androgenic alopecia in women of childbearing potential
- Authors: MAREYEVA AN1, VOLKOV IA1, ROTANOV SV1, FRIGO NV1, CHERNUKHA GY.1
-
Affiliations:
- Issue: Vol 87, No 2 (2011)
- Pages: 26-31
- Section: Articles
- Submitted: 11.03.2020
- Published: 15.04.2011
- URL: https://vestnikdv.ru/jour/article/view/982
- DOI: https://doi.org/10.25208/vdv982
- ID: 982
Cite item
Full Text
Abstract
The authors describe the results of a study of polymorphism of the androgen receptor gene by the number of CAG repeats in exon
1 of the androgen receptor gene and non-random X chromosome inactivation in 87 women of childbearing potential (at the average age of 29.5 ± 5.4 years) suffering from androgenic alopecia. They revealed an association between the presence of 'short' (≤ 22) CAG repeats in both alleles of the androgen receptor gene (р < 0,05) and a reliable growth of prevalence of non-random X chromosome inactivation in patients with androgenic alopecia as compared to healthy women (50.7% (39/77) and 16.1% (9/56), respectively, р < 0.05). These data demonstrate a pathogenetic role of polymorphism of the androgen receptor gene and non-random X chromosome inactivation in the development of androgenic alopecia in women of childbearing potential as well as urgency of using molecular and genetic studies to study pathogenetic mechanisms of the disease.
1 of the androgen receptor gene and non-random X chromosome inactivation in 87 women of childbearing potential (at the average age of 29.5 ± 5.4 years) suffering from androgenic alopecia. They revealed an association between the presence of 'short' (≤ 22) CAG repeats in both alleles of the androgen receptor gene (р < 0,05) and a reliable growth of prevalence of non-random X chromosome inactivation in patients with androgenic alopecia as compared to healthy women (50.7% (39/77) and 16.1% (9/56), respectively, р < 0.05). These data demonstrate a pathogenetic role of polymorphism of the androgen receptor gene and non-random X chromosome inactivation in the development of androgenic alopecia in women of childbearing potential as well as urgency of using molecular and genetic studies to study pathogenetic mechanisms of the disease.
About the authors
A N MAREYEVA
Email: nastasya_66@mail.ru
I A VOLKOV
S V ROTANOV
N V FRIGO
G YE CHERNUKHA
References
- Машкиллейсон А.А. Алопеция. Лечение кожных болезней: Рук. для врачей. Под ред. А.Л. Машкиллейсона. М.: Медицина. 1990: 460-468.
- Quan Q Dinh, Sinclair R. Female pattern hair loss: Current treatment concepts. Clinical Interventions in Aging 2007; 2(2): 189-199.
- Cash T.F., Price V.H., Savin R.C. Psychological effects of androgenetic alopecia on women: Comparisons with balding men and with female control subjects. J Am Acad Dermatol 1993; 29: 568-75.
- Hoffmann R., Happle R. Current understanding of androgenetic alopecia. Part I: ethiopathogenesis. Eur J Dermatol 2000; 10: 319-2.
- Birch M.P., Lashen H., Agarwal S., Messenger A.G. Female pattern hair loss, sebum excretion and the end-organ response to androgens. Br J Dermatol 2006 Jan; 154(1): 85-9.
- Deplewski D., Rosenfield R.L. Role of hormones in pilosebaceous unit development. Endocrine Rev 2000; 21: 363-92.
- Lubahn D.B., Joseph D.R., Sullivan P.M. et al. Cloning of human androgen receptor complementary DNA and localization to the X chromosome. Science 1988; 240: 327-330.
- Brown C.J., Goss S.J., Lubahn D.B. et al. Androgen receptor locus on the human X chromosome: regional localization to Xq11-12 and description of a DNA polymorphism. Am J Hum Genet 1989; 44: 264-269.
- Chang C., Kokontis J., Liao S. Molecular-cloning of human and rat complementary-DNA encoding androgen receptors. Science 1988; 240: 324-326.
- Chamberlain N.L., Driver E.D., Miesfeld R.L. The length and location of the CAG trinucleotide repeats in the androgen receptor N- terminal domain affect transactivation function. Nucleic Acids Res 1994; 22: 3181-6.
- Choong C.S., Kemppainen J.A., Zhou Z.X., Wilson E.M. Reduced androgen receptor gene expression with first exon CAG repeat expansion. Mol Endocrinol 1996; 10: 1527-35.
- Gao T., Marcelli M., McPhaul M.J. Transcriptional activation and transient expression of the human androgen receptor. J Steriod Biochem Mol Biol 1996; 59: 9-20.
- Ding D., Xu L., Menon M. et al. Effect of short CAG (Glutamine) repeat on human androgen receptor function. Prostate 2004; 58: 23-32.
- Ding D., Xu L., Menon M. et al. Effect of GGC (Glycine) repeat length polymorphism in the human androgen receptor on androgen action. Prostate 2004; 9999: 1-7.
- Lyon M. Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 1961; 22: 372-373.
- Sato К., Uehara S., Hashiyada М. et al. Genetic significance of skewed X-chromosome inactivation in premature ovarian failure. Am J Med Genetics 2004.
- Mifsud A., Ramirez S., Yong E.L. Androgen receptor gene CAG trinucleotide repeats in anovulatory infertility and polycystic ovaries. J Clin Endocrinol Metab 2000; 85: 3484-3488.
- Hickey T., Chandy A., Norman R.J. The androgen receptor CAG repeat polymorphism and X-chromosome inactivation in Australian Caucasian women with infertility related to polycystic ovary syndrome. J Clin Endocrinol Metab 2002; 87: 161-165.
- Uehara S., Tamura M., Nate M. et al. X-chromosome inactivation in the human trophoblast of early pregnancy. J Hum Genet 2000; 45: 119-26.
- Uehara S., Sato K., Hashiyada M. et al. X-chromosome inactivation patterns in 45, X/46, XX mosaics. J Hum Genet 2001; 46: 126-31.
- Heard E., Clerc P., Avner P. X-chromosome inactivation in mammals. Ann RevGenet 1997; 31: 571-610.
- Sirianni N., Pereira J., Pillotto R., Hoffinan E.P. Rett syndrome: Confirmation of X-linked dominant inheritance, and localization of the gene to Xq28. Am J Hum Genet 1998; 63: 1552-8.
- Rajender S. et al. Phenotypic heterogeneity of mutations in androgen receptor gene. Asian J Androl 2007; 9: 147-179.
- Shah N.A., Antoine H.J., Pall M. et al. Assodation of androgen receptor CAG repeat polymorphism and polycystic ovary syndrome. J Clin Endocrinol Metab 2008, 93(5): 1939-1945.
- Knudsen G.P., Neilson T.C., Pedersen J. et al. Increased skewing of X chromosome inactivation in Rett syndrome patients and their mothers. European Journal of Human Genetics 2006; 14: 1189-1194.
- Beever C.L., Stephenson M.D., Panaherrera M.S. et al. Skewed X-chromosome inactivation is associated with trisomy in women ascertained on the basis of recurrent spontaneous abortion or chromosomally abnormal pregnancies. American Journal of Human Genetics 2003; 72: 399-407.
- Bretherick K.L., Metzger D.L., Chanoine J.P. et al. Skewed X-chromosome inactivation is associated with primary but not secondary ovarian failure. American Journal of Medical Genetics 2007; 143: 945-951.
- Kuo P.L., Huang S.C., Chang L.W. et al. Association of extremely skewed X-chromosome inactivation with Taiwanese women presenting with recurrent pregnancy loss. Journal of Formosan Medical Association 2008; 107: 308-343.
- Lappalainen S., Utriainen P., Kuulasmaa T. et al. Androgen Receptor Gene CAG Repeat Polymorphism and X-Chromosome Inactivation in Children with Premature Adrenarche. The Journal of Clinical Endocrinology & Metabolism 2008; 93(4): 1304-1309.