Immunological and molecular genetic mechanisms of the development of mycosis fungoides

Cover Page


Cite item

Full Text

Abstract

This review reflects modern information about the possible mechanisms of skin lymphomas. Generalized the data of the possible etiologic factors of the disease. Described the basic pathogenesis and show practical importance identified molecular markers in the diagnosis and treatment of patients with lymphoproliferative diseases of the skin.

About the authors

A. S. Zhukov

Military Medical Academy named after S.M. Kirov Ministry of Defense of the Russian Federation

Author for correspondence.
Email: md.zhukov@gmail.com
Россия

I. E. Belousova

Military Medical Academy named after S.M. Kirov Ministry of Defense of the Russian Federation

Email: noemail@neicon.ru
Россия

A. V. Samtsov

Military Medical Academy named after S.M. Kirov Ministry of Defense of the Russian Federation

Email: noemail@neicon.ru
Россия

References

  1. Girardi M., Heald P.W., Wilson L.D. The pathogenesis of mycosis fungoides. N Engl J Med 2004; 350: 1978-88.
  2. Talpur R., Bassett R., Duvic M. Prevalence and treatment of Staphylococcus aureus colonization in patients with mycosis fungoides and Sezary syndrome. Br J Dermatol 2008; 159: 105-12.
  3. Herne K.L., Talpur R., Breuer-McHam J., Champlin R., Duvic M. Cytomegalovirus seropositivity is significantly associated with mycosis fungoi-des and Sezary syndrome. Blood 2003; 101: 2132-6.
  4. Rodriguez-Gil Y., Palencia S.I., Lopez-Rios F., Ortiz P.L., Rodriguez-Peralto J.L. Mycosis fungoides after solid-organ transplantation: report of 2 new cases. Am J Dermatopathol 2008; 30: 150-5.
  5. Guitart J. HIV-1 and an HTLV-II-associated cutaneous T-cell lymphoma. N Engl J Med 2000; 343: 303-4.
  6. Wu J., Wood G.S. Reduction of Fas/CD95 promoter methylation, upregulation of Fas protein, and enhancement of sensitivity to apoptosis in cutaneous T-Cell lymphoma. Arch Dermatol 2011; 147: 443-449.
  7. Jones C.L., Wain E.M., Chu C.C., Tosi I., Foster R., McKenzie R.C. et al. Downregulation of Fas gene expression in Sezary syndrome is associated with promoter hypermethylation. J Invest Dermatol 2010; 130: 1116-25.
  8. Dereure O., Levi E., Vonderheid E.C., Kadin M.E. Infrequent Fas mutations but no Bax or p53 mutations in early mycosis fungoides: a possible mechanism for the accumulation of malignant T lymphocytes in the skin. J Invest Dermatol 2002; 118: 949-56.
  9. Scarisbrick J.J., Woolford A.J., RussellJones R., Whittaker S.J. Loss of heterozygosity on 10q and microsatellite instability in advanced stages of primary cutaneous T-cell lymphoma and possible association with homozygous deletion of PTEN. Blood 2000; 95: 2937-2942.
  10. Contassot E., Kerl K., Roques S., Shane R., Gaide O., Dupuis M. et al. Resistance to FasL and tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in Sezary syndrome T-cells associated with impaired death receptor and FLICE-inhibitory protein expression. Blood 2008; 111: 4780-7.
  11. Dereure O., Portales P., Clot J., Guilhou J.J. Decreased expression of Fas (APO-1/CD95) on peripheral blood CD41 T lymphocytes in cutaneous T-cell lymphomas. Br J Dermatol2000; 143: 1205-10.
  12. Wu J., Nihal M., Siddiqui J., Vonderheid E.C., Wood G.S. Low FAS/CD95 expression by CTCL correlates with reduced sensitivity to apoptosis that can be restored by FAS upregulation. J Invest Dermatol 2009; 129: 1165-73.
  13. Krejsgaard T., Odum N., Geisler C., Wasik M.A., Woetmann A. Regulatory T cells and immunodeficiency in mycosis fungoides and Sezary syndrome. Leukemia 2012; 26: 424-32.
  14. Ni X., Hazarika P., Zhang C., Talpur R., Duvic M. Fas ligand expression by neoplastic T lymphocytes mediates elimination of CD81 cytotoxic T lymphocytes in mycosis fungoides: a potential mechanism of tumor immune escape? ClinCancer Res 2001; 7: 2682-92.
  15. Clark R.A., Chong B., Mirchandani N. et al. The vast majority of CLA1 T cells are residentin normal skin. J Immunol 2006; 176: 4431-4439.
  16. Reiss Y., Proudfoot A.E., Power C.A. et al. CC chemokine receptor (CCR)4 and the CCR10 ligand cutaneous T cell-attracting chemokine (CTACK) in lymphocyte trafficking to inflamed skin. J Exp Med 2001; 194: 1541-1547.
  17. Homey B., Alenius H., Muller A. et al. CCL27-CCR10 interactions regulate T cell-mediated skin inflammation. Nat Med 2002; 8: 157-165.
  18. Campbell J.J., Clark R.A., Watanabe R., Kupper T.S. Sezary syndrome and mycosis fungoides arise from distinct T-cell subsets: A biologic rationale for their distinct clinical behaviors. Blood 2010; 116: 767-771.
  19. Wilcox R.A. Cutaneous T-cell lymphoma: 2014 update on diagnosis, risk-stratification, and management. Am J Hematol. 2014 Aug; 89 (8): 837-51.
  20. Laharanne E., Oumouhou N., Bonnet F. et al. Genome-wide analysis of cutaneous T-cell lymphomas identifies three clinically relevant classes. J Invest Dermatol 2010; 130: 1707-1718.
  21. van Doorn R., van Kester M.S., Dijkman R. et al. Oncogenomic analysis of mycosis fungoides reveals major differences with Sezary syndrome. Blood 2009; 113: 127-136.
  22. Kallinich T., Muche J.M., Qin S., Sterry W., Audring H., Kroczek R.A. Chemokine receptor expression on neoplastic and reactive T cells in the skin at different stages of mycosis fungoides. J Invest Dermatol 2003; 121: 1045-52.
  23. Hu S.C., Lin C.L., Hong C.H., Yu H.S., Chen G.S., Lee C.H. CCR7 expression correlates with subcutaneous involvement in mycosis fungoides skin lesions and promotes migration of mycosis fungoides cells (MyLa) through mTOR activation. J Dermatol Sci. 2014 Apr; 74 (1): 31-8.
  24. Saed G., Fivenson D.P., Naidu Y., Nickoloff B.J. Mycosis fungoides exhibits a Th1-type cell-mediated cytokine profile whereas Sezary syndrome expresses a Th2-type profile. J Invest Dermatol 1994; 103: 29-33.
  25. Sigurdsson V., Toonstra J., Bihari I.C., Bruijnzeel-Koomen C.A., van Vloten W.A., Thepen T. Interleukin 4 and interferon-gamma expression of the dermal infiltrate in patients with erythroderma and mycosis fungoides. An immuno-histochemical study. J CutanPathol 2000; 27: 429-35.
  26. Chong B.F., Wilson A.J., Gibson H.M., Hafner M.S., Luo Y., Hedgcock C.J. et al. Immune function abnormalities in peripheral blood mononuclear cell cytokine expression differentiates stages of cutaneous T-cell lymphoma/mycosis fungoides. Clin Cancer Res 2008; 14: 646-53.
  27. Berger C.L., Tigelaar R., Cohen J. et al. Cutaneous T-cell lymphoma: Malignant proliferation of T-regulatory cells. Blood 2005; 105: 1640-1647.
  28. Nebozhyn M., Loboda A., Kari L. et al. Quantitative PCR on 5 genes reliably identifies CTCL patients with 5% to 99% circulating tumor cells with 90% accuracy. Blood 2006; 107: 3189-3196.
  29. Vaque J.P., Gomez-Lopez G., Monsalvez V. et al. PLCG1 mutations in cutaneous T-cell lymphomas. Blood 2014; 123: 2034-2043.
  30. Kasprzycka M., Zhang Q., Witkiewicz A. et al. Gamma c-signaling cytokines induce a regulatory T cell phenotype in malignant CD41 T lymphocytes. J Immunol 2008; 181: 2506-2512.
  31. Yamanaka K., Clark R., Rich B. et al. Skin-derived interleukin-7 contributes to the proliferation of lymphocytes in cutaneous T-cell lymphoma. Blood 2006; 107: 2440-2445.
  32. Dave S.S., Wright G., Tan B. et al. Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N Engl J Med 2004; 351: 2159-2169.
  33. Steidl C., Lee T., Shah S.P. et al. Tumor-associated macrophages and survival in classic Hodgkin’s lymphoma. N Engl J Med 2010; 362: 875-885.
  34. Schlapbach C., Ochsenbein A., Kaelin U. et al. High numbers of DC-SIGN1 dendritic cells in le-sional skin of cutaneous T-cell lymphoma. J Am Acad Dermatol 2010; 62: 995-1004.
  35. Wilcox R.A. Cancer-associated myeloprolif-eration: Old association, new therapeutic target. Mayo Clin Proc 2010; 85: 656-663.
  36. Berger C.L., Hanlon D., Kanada D. et al. The growth of cutaneous T-cell lymphoma is stimulated by immature dendritic cells. Blood 2002; 99: 2929-2939
  37. Wilcox R.A., Wada D.A., Ziesmer S.C. et al. Monocytes promote tumor cell survival in T-cell lymphoproliferative disorders and are impaired in their ability to differentiate into mature dendritic cells. Blood 2009; 114: 2936-2944.
  38. Shin J., Monti S., Aires D.J. et al. Lesional gene expression profiling in cutaneous T-cell lymphoma reveals natural clusters associated with disease outcome. Blood 2007; 110: 3015-3027.
  39. Zhukov A.S., Belousova I.E., Khairutdinov V.R., Samtsov A.V. Role of langerin-positive and CD83+ cells in the pathogenesis of mycosis fungoides. Vestn dermatol venerol 2013; 4: 38-43.
  40. Samimi S., Benoit B., Evans K. et al. Increased programmed death-1 expression on CD41 T cells in cutaneous T-cell lymphoma: Implications for immune suppression. Arch Dermatol 2010; 146: 1382-1388.
  41. Rabenhorst A., Schlaak M., Heukamp L.C., Forster A., Theurich S. von Bergwelt-Baildon M. et al. Mast cells play a protumorigenic role in primary cutaneous lymphoma. Blood 2012; 120: 2042-54.
  42. Goteri G., Filosa A., Mannello B., Stramazzotti D., Rupoli S., Leoni P. et al. Density of neoplastic lymphoid infiltrate, CD81 T cells, and CD1a1 dendritic cells in mycosis fungoides. J ClinPathol 2003; 56: 453-8.
  43. Zhukov A.S. Belousova I.E., Samtsov A.V. Foxp3+ T-lymphocytes in the pathogenesis of mycosis fungoides. Vestnik dermatologii i ven-erologii. 2014; 5: 68-72.
  44. Mao X., Orchard G., Mitchell T.J., Oyama N., Russell-Jones R.,Vermeer M.H. et al. A genomic and expression study of AP-1in primary cutaneous T-cell lymphoma: evidence for dysre-gulated expression of JUNB and JUND in Mf and SS. J CutanPathol 2008; 35: 899-910.
  45. Sommer V.H., Clemmensen O.J., Nielsen O., Wasik M., Lovato P., Brender C. et al. In vivo activation of STAT3 in cutaneous T-cell lymphoma. Evidence for an antiapoptotic function of STAT3. Leukemia 2004; 18: 1288-95.
  46. Ralfkiaer U., Hagedorn P.H., Bangsgaard N., Lovendorf M.B., Ahler C.B., Svensson L. et al. Diagnostic microRNA profiling in cutaneous T-cell lymphoma (CTCL). Blood 2011; 118: 5891-900.
  47. Izban K.F., Ergin M., Qin J.Z. et al. Constitutive expression of NF-kappa B is a characteristic feature of mycosis fungoides: Implications for apoptosis resistance and pathogenesis. Hum Pathol 2000; 31: 1482-1490.
  48. Sors A., Jean-Louis F., Pellet C. et al. Down-regulating constitutive activation of the NF-kappaB canonical pathway overcomes the resistance of cutaneous T-cell lymphoma to apoptosis. Blood 2006; 107: 2354-2363.
  49. Sors A., Jean-Louis F., Begue E. et al. Inhibition of IkappaB kinase subunit 2 in cutaneous T-cell lymphoma down-regulates nuclear factor-kappaB constitutive activation, induces cell death, and potentiates the apoptotic response to antineoplastic chemotherapeutic agents. Clin Cancer Res 2008; 14: 901-911.
  50. Juvekar A., Manna S., Ramaswami S. et al. Bort-ezomib induces nuclear translocation of Ikappa-Balpha resulting in gene-specific suppression of NF-kappaB-dependent transcription and induction of apoptosis in CTCL. Mol Cancer Res 2011; 9: 183-194.
  51. Gunther C., Zimmermann N., Berndt N., Grosser M., Stein A., Koch A. et al. Up-regulation of the chemokine CCL18 by macrophages is a potential immunomodulatory pathway in cutaneous T-cell lymphoma. Am J Pathol 2011; 179: 1434-42.
  52. Navas I.C., Ortiz-Romero P.L., Villuendas R., Martinez P., Garcia C., Gomez E. et al. p16(INK4a) gene alterations are frequent in lesions of mycosis fungoides. Am J Pathol 2000; 156: 1565-72.
  53. Mao X., Orchard G., Vonderheid E.C., Nowell P.C., Bagot M., Bensussan A. et al. Heterogeneous abnormalities of CCND1 and RB1 in primary cutaneous T-Cell lymphomas suggesting impaired cell cycle control in disease pathogenesis. J Invest Dermatol 2006; 126: 1388-95.
  54. Scarisbrick J.J., Woolford A.J., Calonje E., Photiou A., Ferreira S., Orchard G. et al. Frequent abnormalities of the p15 and p16 genes in mycosis fungoides and Sezary syndrome. J Invest Dermatol 2002; 118: 493-9.
  55. Mao X., Lillington D., Scarisbrick J.J., Mitchell T., Czepulkowski B., Russell-Jones R. et al. Molecular cytogenetic analysis of cutaneous T-cell lymphomas: identification of common genetic alterations in Sezary syndrome and mycosis fungoides. Br J Dermatol 2002; 147: 464-75.
  56. Lin W.M., Lewis J.M., Filler R.B., Modi B.G., Carlson K.R., Reddy S., Thornberg A., Sakse-na G., Umlauf S., Oberholzer P.A., Karpova M., Getz G., Mane S., Garraway L.A., Dummer R., Berger C.L., Edelson R.L., Girardi M. Characterization of the DNA copy-number genome in the blood of cutaneous T-cell lymphoma patients. J InvestDermatol. 2012 Jan; 132 (1): 188-97.
  57. Netchiporouk E., Litvinov I.V., Moreau L., Gilbert M., Sasseville D., Duvic M. Deregulation in STAT signaling is important for cutaneous T-cell lymphoma (CTCL) pathogenesis and cancer progression. Cell Cycle. 2014; 13 (21): 3331-5.
  58. Zhang Q., Wang H.Y., Woetmann A. et al. STAT3 induces transcription of the DNA methyltrans-ferase 1 gene (DNMT1) in malignant T lymphocytes. Blood 2006; 108: 1058-1064.
  59. Verma N.K., Davies A.M., Long A. et al. STAT3 knockdown by siRNA induces apoptosis in human cutaneous T-cell lymphoma line Hut78 via downregulation of Bcl-xL. Cell MolBiolLett 2010; 15: 342-355.
  60. Nielsen M., Kaestel C.G., Eriksen K.W., Woetmann A., Stokkedal T., Kaltoft K. et al. Inhibition of constitutively activated Stat3 correlates with altered Bcl-2/Bax expression and induction of apoptosis in mycosis fungoides tumor cells. Leukemia 1999; 13: 735-8.
  61. Ivan V., Litvinov B.C., Simon Fredholm, Nielsodum, Hanieh Zargham, Yuanshen Huang, Youwen Zhou, Kevin Pehr, Kupper Thomas S., Anders Woetmann, Denis Sasseville. Analysis of STAT4 expression in cutaneous T-cell lymphoma (CTCL) patients and patient derived cell lines. Cell Cycle 2014; 13: 1-8;
  62. Tracey L., Villuendas R., Dotor A.M., Spiteri I., Ortiz P., Garcia J.F., Peralto J.L., Lawler M., Piris M.A. Mycosis fungoides shows concurrent deregulation of multiple genes involved in the TNF signaling pathway: an expression profile study. Blood 2003; 102: 1042-50;
  63. Johnson V.E., Vonderheid E.C., Hess A.D., Eischen C.M., McGirt L.Y. Genetic markers associated with progression in early mycosis fungoides. J Eur Acad Dermatol Venereol: JEADV 2013.
  64. Kari L., Loboda A., Nebozhyn M., Rook A.H., Vonderheid E.C., Nichols C., Virok D., Chang C., Horng W.H., Johnston J. et al. Classification and prediction of survival in patients with the leukemic phase of cutaneous T cell lymphoma. J Exp Med 2003; 197: 1477-88.
  65. Tili E., Michaille J.J., Wernicke D., Alder H., Costinean S., Volinia S., Croce C.M. Mutator activity induced by microRNA-155 (miR-155) links inflammation and cancer. ProcNatAcadSci USA 2011; 108: 4908-13.
  66. Kennah E., Ringrose A., Zhou L.L. et al. Identification of tyrosine kinase, HCK, and tumor suppressor, BIN1, as potential mediators of AHI-1 oncogene in primary and transformed CTCL cells. Blood 2009; 113: 4646-4655.
  67. Qin J.Z., Dummer R., Burg G., Dobbeling U. Constitutive and interleukin-7/interleukin-15 stimulated DNA binding of Myc, Jun, and novel Myc-like proteins in cutaneous T-cell lymphoma cells. Blood 1999; 93: 260-267.
  68. Kiessling M.K., Oberholzer P.A., Mondal C. et al. High-throughput mutation profiling of CTCL samples reveals KRAS and NRAS mutations sensitizing tumors toward inhibition of the RAS/ RAF/MEK signaling cascade. Blood 2011; 117: 2433-2440.
  69. Delmonte A., Ghielmini M., Sessa C. Beyond monoclonal antibodies: new therapeutic agents in nonHodgkin’s lymphomas. Oncologist 2009; 14: 5: 511-525.
  70. Huang Y., Su M.W., Jiang X., Zhou Y. Evidence of an oncogenic role of aberrant TOX activation in cutaneous T cell lymphoma. Blood 2014 Dec 29. pii:blood-2014-05-571778.
  71. Zhang Y., Wang Y., Yu R, Huang Y., Su M., Xiao C., Martinka M., Dutz J.P., Zhang X., Zheng Z., Zhou Y. Molecular markers of early-stage mycosis fungoides. J Invest Dermatol 2012 Jun; 132 (6): 1698-706.
  72. Zhukov A.S., Belousova I.E., Samtsov A.V. Im-munohistochemistry method and diagnostics of mycosis fungoides. Vestnik dermatologii i venerologii. 2014; 2: 38-46.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2015 Zhukov A.S., Belousova I.E., Samtsov A.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 60448 от 30.12.2014.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies