Experimental models of leprosy

Cover Page


Cite item

Full Text

Abstract

Leprosy (Hansen’s disease) is a chronic granulomatous bacterial disease which mainly affects skin and peripheral nervous system. Leprosy is caused by the obligate intercellular pathogen known as Mycobacterium leprae. Creating experimental models of leprosy is associated with serious problems due to biological characteristics of the pathogen. Numerous attempts to develop experimental models on different types of animals resulted in a few reproducible models on mice and nine-banded armadillos. Strains of knockout mice with genetic defects caused by site-directed mutagenesis are used as a basis for different leprosy models. Experimental models of leprosy are used for screening of anti-leprosy drugs, detection of drug resistance, studies on the pathogenesis of leprosy, production and evaluation of viability of M. leprae, developing of anti-leprosy vaccines.

About the authors

A. A. Kubanov

State Research Center of Dermatovenereology and Cosmetology, Ministry of Healthcare of the Russian Federation

Author for correspondence.
Email: noemail@neicon.ru
Россия

A. E. Karamova

State Research Center of Dermatovenereology and Cosmetology, Ministry of Healthcare of the Russian Federation

Email: Karamova@cnikvi.ru
Россия

A. A. Vorontsova

State Research Center of Dermatovenereology and Cosmetology, Ministry of Healthcare of the Russian Federation

Email: noemail@neicon.ru
Россия

P. A. Kalinina

Russian Medical Academy of Postgraduate Studies, Ministry of Health of the Russian Federation

Email: noemail@neicon.ru
Россия

References

  1. Дегтярев О.В., меснянкина О.А., Наумов В.з. Применение гептрала (адеметионина) в терапии поражений печени у больных лепрой. Вестник дерматол венерол 2010; (3): 57-60
  2. Первухин Ю.В., Дуйко Д.В. Экспериментальная лепра: прошлое, настоящее и будущее. Эксп физиол морфол и медицина 2010; 31 (2): 144-150
  3. Юшин М.Ю., Анохина В.В., Аюпова А.к. и др. модель интраплантарного заражения мышей Mycobacterium leprae, разработанная C.C. Shepard, и ее место в экспериментальной лепрологии. Экспер физиол морфол и медицина 2010; 2 (31): 159-163
  4. Saunderson P.R. Leprosy elimination: not as straightforward as it seemed. Public Health Rep 2008; 123 (2): 213-216.
  5. Rees R.J. A century of progress in experimental leprosy. Int J Lepr Other Mycobact Dis 1973; 41 (3): 320-328.
  6. Johnstone P.A. The search for animal models of leprosy. Int J Lepr Other Mycobact Dis 1987: 55 (3): 535-547. Литература
  7. Irgens L.M. The discovery of Mycobacterium leprae. A medical achievement in the light of evolving scientific methods. Am J Dermatopa-thol 1984; 6 (4): 337-343.
  8. Kirchheimer W.F., Storrs E.E. Attempts to establish the armadillo (Dasypus novemcinctus Linn.) as a model for the study of leprosy. I. Report of lepromatoid leprosy in an experimentally infected armadillo. Int J Lepr Other Mycobact Dis 1971; 39: 693-702.
  9. Faizal M. Animal models in leprosy. South Am J Med 2013; 1 (1).
  10. Schurr E., Buschman E., Malo D. Immunoge-netics of mycobacterial infections: mouse-human homologies. J Infect Dis 1990; (161) 4: 634-639.
  11. Shepard C.C. The experimental disease that follows the injection of human leprosy bacilli into foot-pads of mice. J Exp Med 1960; 112 (3): 445-454.
  12. Chehl S., Ruby J., Job C.K. et al. The growth of Mycobacterium leprae in nude mice. Lepr Rev 1983; 54: 283-304.
  13. Colston M.J., Hilson G.R.F. Growth of Mycobacterium leprae and M. marinum in congenitally athymic (nude) mice. Nature 1976; 262: 399-401.
  14. Dawson P.J., Colston M.J., fieldsteel A.H. Infection of the congenitally athymic rat with Mycobacterium leprae. Int J Lepr Other Mycobact Dis 1983; 51: 336-346.
  15. Rees R.J. Enhanced susceptibility of thymectomized and irradiated mice to infection with Mycobacterium leprae. Nature 1966; 211: 657-658.
  16. Ebenezer G.J., Arumugam S., Job C.K. Dosage and site of entry influence growth and dissemination of Mycobacterium leprae in T900r mice. Int J Lepr Other Mycobact Dis 2002; 70 (4): 245-249.
  17. Azouaou N., Gelber R.H., Abel K. et al. Reconstitution of Mycobacterium leprae immunity in severe combined immunodeficient mice using a T-cell line. Int J Lepr Other Mycobact Dis 1993; 61: 398-405.
  18. Yogi Y., Nakamura K., Inoue T. et al. Susceptibility of severe combined immunodeficient (SCID) mice to Mycobacterium leprae: multiplication of the bacillus and dissemination of the infection at early stage. Nippon Rai Gakkai Zasshi 1991; 60: 139-145.
  19. Hagge D.A., Saunders B.M., Ebenezer G.J. et al. Lymphotoxin-alpha and TNF have essential but independent roles in the evolution of the granulomatous response in experimental leprosy. Am J Pathol 2009; 174: 1379-1389.
  20. Kohsaka K., Mori T., Ito T. Lepromatoid lesion developed in nude mouse inoculated with Mycobacterium leprae--animal transmission of leprosy. Repura 1976; 45 (3): 177-187.
  21. Scollard D.M. Adams L. B., Gillis T. P. et al. The continuing challenges of leprosy. Clin Microbiol Rev 2006; 19 (2): 338-381.
  22. Vosse E. Van De, Hoeve M. A., Ottenhoff T.H.M. Human genetics of intracellular infectious diseases: Molecular and cellular immunity against mycobacteria and salmonellae. Lancet Infect. Dis. 2004; 4: 739-749.
  23. Khader S.A., Gopal R. IL-17 in protective immunity to intracellular pathogens. Virulence 2014; 1 (5): 423-427.
  24. Torrado E., Cooper A.M. IL-17 and Th17 cells in tuberculosis. Cytokine Growth Factor Rev 2010; 21 (6): 455-462.
  25. Khader S.A. Pearl J.E., Sakamoto K. et al. IL-23 compensates for the absence of IL-12p70 and is essential for the IL-17 response during tuberculosis but is dispensable for protection and antigen-specific IFN-gamma responses if IL-12p70 is available. J Immunol 2005; 175 (2): 788-795.
  26. Adams L.B., Pena M.T., Sharma R. et al. Insights from animal models on the immunogenetics of leprosy: a review. Mem Inst Oswaldo Cruz 2012; 107: 197-208.
  27. Jacobs M., Brown N., Allie N. et al. Increased resistance to mycobacterial infection in the absence of interleukin-10. Immunology 2000; 100 (4): 494-501.
  28. Fukutomi Y., Matsuoka M., Minagawa F. et al. IL-10 treatment of macrophages bolsters intracellular survival of Mycobacterium leprae. Int J Lepr Other Mycobact Dis 2004; 72 (1): 16-26.
  29. Cardoso C.C., Pereira A.C., de Sales Marques C. et al. Leprosy susceptibility: genetic variations regulate innate and adaptive immunity, and disease outcome. Future Microbiol 2011; (5): 533-49.
  30. Adams L.B., Job C.K., Krahenbuhl J.L. Role of inducible nitric oxide synthase in resistance to Mycobacterium leprae in mice. Infect Immun 2000; 68 (9): 5462-5465.
  31. Modlin R.L., Hofman F.M., Taylor C.R. et al. T lymphocyte subsets in the skin lesions of patients with leprosy. J Am Acad Dermatol 1983; 8 (2): 182-189.
  32. Chen J., Shinkai Y., Young F. et al. Probing immune functions in RAG-deficient mice. Curr Opin Immunol 1994: 6 (2): 313-319.
  33. Mombaerts P., Iacomini J., Johnson R.S. et al. RAG-1-deficient mice have no mature B and T lymphocytes. Cell 1992; 68 (5): 869-877.
  34. Rambukkana A., Zanazzi G., Tapinos N. et al. Contact-dependent demyelination by Mycobacterium leprae in the absence of immune cells. Science 2002; 296: 927-931.
  35. Cardoso C.C., Pereira A.C., Brito-de-Souza V.N. et al. TNF-308G>A single nucleotide polymorphism is associated with leprosy among Brazilians: a genetic epidemiology assessment, meta-analysis, and functional study. J Infect Dis 2011: 204 (8): 1256-1263.
  36. Scollard D.M., Joyce M.P., Gillis T.P. Development of leprosy and type 1 leprosy reactions after treatment with infliximab: a report of 2 cases. Clin Infect Dis 2006: 43 (2): 19-22.
  37. Alcaïs A., Alter A., Antoni G. et al. Stepwise replication identifies a low-producing lymphotoxin-alpha allele as a major risk factor for early-onset leprosy. Nat Genet 2007; 39 (4): 517-522.
  38. Soroosh P., Doherty T.A., So T. et al. Herpesvirus entry mediator (TNFRSF14) regulates the persistence of T helper memory cell populations. J Exp Med 2011; 208 (4): 797-809.
  39. Ware C.F. Network communications: lymphotox-ins, LIGHT, and TNF. Annu Rev Immunol 2005; 23: 787-819.
  40. Mira M.T., Alcaïs A., Nguyen V.T. et al. Susceptibility to leprosy is associated with PARK2 and PACRG. Nature 2004; 427: 636-640.
  41. Alter A., Grant A., Abel L. et al. Leprosy as a genetic disease. Mamm Genome 2011; 22 (1-2): 19-31.
  42. Deretic V. Autophagy in infection. Curr Opin Cell Biol 2010; 22 (2): 252-262.
  43. Krahenbuhl J., Adams L.B. Exploitation of gene knockout mice models to study the pathogenesis of leprosy. Lepr Rev 2000; 71 Suppl. С.: 170-175.
  44. Adams L.B., Scollard D.M., Ray N.A. et al. The study of Mycobacterium leprae infection in interferon-gamma gene--disrupted mice as a model to explore the immunopathologic spectrum of leprosy. J Infect Dis 2002; 185 Suppl. С. S1-8.
  45. Kirchheimer W.F., Storrs E.E. Attempts to establish the armadillo (Dasypus novemcinctus Linn.) as a model for the study of leprosy. I. Report of lepromatoid leprosy in an experimentally infected armadillo. Int J Lepr Other Mycobact Dis 1971; 39: 693-702.
  46. Adams J.E., Pena M.T., Gillis T.P. et al. Expression of nine-banded armadillo (Dasypus novemcinctus) interleukin-2 in E. coli. Cytokine 2005; 32: 219-225.
  47. Kirchheimer W.F., Sanchez R.M. Quantitative aspects of leprosy in armadillos. Int J Lepr Other Mycobact Dis 1976; 44: 84-87.
  48. Storrs E.E., Walsh G.P., Burchfield H.P. Leprosy in the Armadillo New Model for Biomedical Research. Sci (Wash D C) 1974; 183 (4127): 851-852.
  49. Talmage R.V., Buchanen C.D. The armadillo (Dasypus novemcinctus) Areview of its natural history, ecology, anatomy, and reproductive physiology. The Rice Institute Pamphlet Monograph in Biology, vol. XLI Number 2. Houston: Rice Institute. 19541-135.
  50. Truman R.W., Singh P., Sharma R. et al. Probable zoonotic leprosy in the southern United States. N Engl J Med 2011; 364: 1626-1633.
  51. Clark B.M., Murray C.K., Horvath L.L. et al. Case-control study of armadillo contact and Hansen’s disease. Am J Trop Med Hyg 2008; 78: 962-967.
  52. Truman R.W., Krahenbuhl J.L. Viable M. leprae as a rsearch reagent. Int J Lepr Other Mycobact Dis 2001; 69: 1-12.
  53. Truman R.W., Sanchez R.M. Armadillos: Models for leprosy. Lab Anim 1993; 22: 28-32.
  54. Rosa P.S., Belone A.F., Silva E.A. Mitsuda reaction in armadillos Dasypus novemcinctus using human and armadillo derived antigens. Hansen Int 2005; 30: 180-184.
  55. Job C.K., Kirchheimer W.F., Sanchez R.M. Variable lepromin response to Micobacterium leprae in resistant armadillos. Int J Lepr Other Mycobact Dis 1983; 51: 347-353.
  56. Truman R.W., Shannon E.J., Hagstad H.V. et al. Evaluation of the origin of Mycobacterium leprae infections in the wild armadillo, Dasypus novemcinctus. Am J Trop Med Hyg 1986; 35: 588-593.
  57. Ющенко А.А. Перспективы использования броненосцев в медико-биологических исследованиях. Эпидемиология, клиника, диагностика и профилактика антропонозных и зоонозных инфекций. Астрахань: 1982; 225-226
  58. Дячина М.Н., Ющенко А.А. Выявление циркулирующих микобактериальных антител в сыворотках крови броненосцев, зараженных M. leprae. Эпидемиология, клиника, диагностика и профилактика антропонозных и зоонозных инфекций. Астрахань: 1982. С. 223-225
  59. Ющенко А.А. Реверсивные реакции у эксперементально зараженных лепрой девятипоясных броненосцев. Актуальные вопросы лепрологии. Астрахань: 1984; 40-42
  60. Вишневецкий Ф.Е., Ющенко А.А. Патоморфологические изменения внутренних органов интактных и зараженных микобактериями лепры девятипоясных броненосцев. Бюл эксперим биологии и медицины 1981; (8): 105-109
  61. Вишневецкий Ф.Е., Ющенко А.А. Энзимный спектр и ультраструктура лепрозного макрофага при экспериментальной лепре броненосцев. Фагоцитоз и иммунитет. М: 1983; 54-55
  62. Scollard D.M., Lathrop G.W., Truman R.W. Early nerve invasion in armadillos, an animal model for lepromatous neuropathy 1996; 64: 146-152
  63. Scollard D.M., Lathrop G.W., Truman R.W. Infection of distal peripheral nerves by M. leprae in infected armadillos; an experimental model of nerve involvement in leprosy [see comments]. Int J Lepr Other Mycobact Dis 1996; 64: 146-151.
  64. Scollard D.M. The armadillo leprosy model with particular reference to lepromatous neuritis. Handbook of Animal Models of Infection. New York: Academic Press 1999: 331-335.
  65. Scollard D.M., Adams L.B., Gillis T.P., Krahenbuhl J.L., Truman R.W., Williams D.L. The continuing challenges of leprosy. Clin Microbiol Rev 2006; 19: 338-381.
  66. Bochud P.Y., Sisimer D., Aderem A. et al. Polymorphhismis in Toll-like receptor 4 are associated with protection against leproy. Eur J Clin Microbiol Infect Dis 2009; 28: 1055-1065.
  67. Misch E.A., Berrington W.R., Vary J.C. Jr., Hawn T.R. Leprosy and the human genome. Microbiol Mol Biol Rev 2010; 74: 589-620.
  68. Sharma R., Lahiri R., Scollard D.M. et al. The armadillo: a model for the neuropathy of leprosy and potentially other neurodegenerative diseases. Dis Model Mech 2013; 6: 19-24.
  69. Garbino J.A., Virmond M., Almeida J.A. Nerve Conduction Study Technique in the Armadillo. Hansen Int 1996; 21: 10-13.
  70. Pettit J.H., Rees R.J. Sulphone resistance in leprosy. An experimental and clinical study. Lancet (London, England) 1964; 2 (7361): 673-674.
  71. Jacobson R.R., Hastings R.C. Rifampin-resistant leprosy. Lancet (London, England)1976; 2: 1304-1305.
  72. Cambau E., Perani E., Guillemin I. et al. Mutidrugresistance to dapsone, rifampicin, and ofloxacin in Mycobacterium leprae. Lancet (London, England) 1997; 349 (9045): 103-104.
  73. Cambau E., Chauffour-Nevejans A., Tejmar-Kolar L. et al. Detection of antibiotic resistance in leprosy using GenoType LepraeDR, a novel ready-to-use molecular test. PLoS Negl Trop Dis 2012; 6 (7): 1739.
  74. Desikan K. V, Sreevatsa. Extended studies on the viability of Mycobacterium leprae outside the human body. Lepr Rev 1995; 66 (4): 287-295.
  75. Shepard C.C., van Landingham R.M., Walker L.L. et al. Comparison of the immunogeni-city of vaccines prepared from viable Mycobacterium bovis BCG, heat-killed Mycobacterium leprae, and a mixture of the two for normal and M. leprae-tolerant mice. Infect. Immun. 1983; 40 (3): 1096-1103.
  76. Gelber R.H., Brennan P.J., Hunter S.W. et al. Effective vaccination of mice against leprosy bacilli with subunits of Mycobacterium leprae. Infect Immun 1990; 58 (3): 711-718.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2015 Kubanov A.A., Karamova A.E., Vorontsova A.A., Kalinina P.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 60448 от 30.12.2014.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies