The use of current genotyping assay methods for Neisseria gonorrhoeae

Cover Page

Cite item


The review deals with up-to-date genotyping assay methods of Neisseria gonorrhoeae. The review covers the characteristics and features of each method, application areas of genotyping assay of Neisseria gonorrhoeae. The methods described enable to upgrade the diagnostication of gonococcal infection, predict its antibiotic resistance, trace the contagion and channels of the infection as well as study the processes of molecular evolution of the microorganism. Information obtained based on up-to-date N. gonorrhoeae genotyping assay methods can be used in developing the reproductive health strategy of the population.

About the authors

M. V. Shpilevaya

State Research Center of Dermatovenereology and Cosmetology, Ministry of Healthcare of the Russian Federation

Author for correspondence.
Russian Federation

O. A. Obraztsova

State Research Center of Dermatovenereology and Cosmetology, Ministry of Healthcare of the Russian Federation

Russian Federation

A. V. Chestkov

State Research Center of Dermatovenereology and Cosmetology, Ministry of Healthcare of the Russian Federation

Russian Federation


  1. Report on global sexually transmitted infection surveillance 2013 // WHO Press; Geneva, Switzerland: 2014.
  2. Ison C.A., Golparian D., Saunders P., Chisholm S., Unemo M. Evolution of Neisseria gonorrhoeae is a continuing challenge for mo lecular detection of gonorrhoea: false negative gonococcal porA mutants are spreading internationally. Sex Transm Infect 2013; 89: 197-201.
  3. VOZ Informacionnyj byulleten' № 194 Aprel' 2014 g [ВОЗ Информационный бюллетень № 194 Апрель, 2014 г.]
  4. Thompson D.K., Deal C.D., Ison C.A., Zenilman J.M., Bash M.C. A typing system for Neisseria gonorrhoeae based on biotinylated oligonucleotide probes to PIB gene variable regions. J Infect Dis 2000; 181: 1652-1660.
  5. Trees D.L., Schultz A.J., Knapp J.S. Use of the neisserial lipoprotein (Lip) for subtyping Neisseria gonorrhoeae. J Clin Microbiol 2000; 38: 2914-2916.
  6. van Looveren M., Ison C.A., Ieven M., Vandamme P., Martin I.M., Vermeulen K., Renton A., Goossens H. Evaluation of the discriminatory power of typing methods for Neisseria gonorrhoeae. J Clin Microbiol 1999; 37: 2183-2188.
  7. Viscidi R.P., and J C Demma 2003. Genetic diversity of Neisseria gonorrhoeae housekeeping genes. J Clin Microbiol 41: 197-204.
  8. Кушнир А.В., Ильина Е.Н., Малахова М.В. Припутневич Т.В., Филипенко М.Л. VNTR-типирование изолятов Neisseria gonorrhоeaе в России. Вестник НГУ. Серия: Биология, клиническая медицина 2012; 10: 5
  9. Suggested citation: European Centre for Disease Prevention and Control. Molecular typing of Neisseria gonorrhoeae - results from a pilot study 2010-2011. Stockholm: ECDC; 2012
  10. Unemo M., Dillon J.-A. R. Review and international recommendation of methods for typing Neisseria gonorrhoeae isolates and their implications for improved knowledge of gonococcal epidemiology, treatment, and biology. Clin Microbiol Rev 2011 Jul; 24 (3): 447-58.
  11. Kubanova A., Kubanov A., Frigo N., Solomka V., Semina V., Vorobyev D., Khairullin R., Unemo M. Russian gonococcal antimicrobial susceptibility programme (RU-GASP) - resistance in Neisseria gonorrhoeae during 2009-2012 and NG-MAST genotypes in 2011 and 2012. BMC Infect Dis 2014 Jun 19; 14 (1): 342.
  12. Соломка В.С. Чупров-Неточин Р.Н., Фриго Н.В., Кубанов А.А. Опыт молекулярного типирования и филогенетического анализа штаммов Neisseria gonorrhoeae в Российской Федерации. Vestn Dermatol Venerol 2012; 2: 13-20
  13. Bilek N. et al. 2007. Concordance between Neisseria gonorrhoeae genotypes recovered from known sexual contacts. J Clin Microbiol 45: 3564-3567.
  14. Chen H. et al. 2008. Typing of Neisseria gonorrhoeae Opa and NG-MAST gene of 12 pairs of sexual contact gonorrhea patients in China. J Huazhong Univ Sci Technolog Med Sci 28: 472-475.
  15. Abu-Rajab K. et al. To what extent does Neisseria gonorrhoeae multiantigen sequence typing of gonococcal isolates support information derived from patient interviews? Int J 2009; STD AIDS 20: 414-417.
  16. Ota K.V. et al. Incidence and treatment outcomes of pharyngeal Neisseria gonorrhoeae and Chlamydia trachomatis infections in men who have sex with men: a 13-year retrospective cohort study. Clin Infect Dis 2009; 48: 1237.
  17. Tapsall J. et al. 2009. Two cases of failed ceftriaxone treatment in pharyngeal gonorrhoeae verified by molecular microbiological methods. J Med Microbiol 58: 683-687.
  18. Martin I.M. et al. Non-cultural detection and molecular genotyping of Neisseria gonorrhoeae from a piece of clothing. J Med Microbiol 2007; 56: 487-490.
  19. Maiden M.C., Bygraves J.A., Feil E., Morelli G., Russell J.E., Urwin R., Zhang Q., Zhou J., Zurth K., Caugant D.A., Feavers I.M., Achtman M., Spratt B.G. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci USA 1998; 95 (6): 3140-3145.
  20. Платонов А.Е., Шипулин Г.А., Тютюнник Е.Н., Платонова О.В. Генодиагностика бактериальных менингитов и генотипирование их возбудителей. Пособие для врачей ФГУН «Центральный НИИ Эпидемиологии» Роспотребнадзора. М. 2001
  21. Feavers I.M., Gray S.J., Urwin R., Russell J.E., Bygraves J.A., Kaczmarski E.B., Maiden C. Multilocus sequence typing and antigen gene sequencing in the investigation of a meningococcal disease outbreak. J Clin Microbiol 1999; 37: 3883-3887.
  22. Rahaman M.H., Islam T., Colwell R.R., Alam M. Collection 2015. Molecular tools in understanding the evolution of Vibrio cholerae. Front Microbiol 2015 Oct 6; 6: 1040.
  23. Yu J., Sun Z., Liu W., Xi X., Song Y., Xu H., Lv Q., Bao Q., Menghe B., Sun T. Multilocus sequence typing of Streptococcus thermophilus from naturally fermented dairy foods in China and Mongolia. BMC Microbiol 2015 Oct 26; 15 (1): 236.
  24. Hu H.C., Kao K.C., Chiu L.C., Chang C.H., Hung C.Y., Li L.F., Liu T.P., Lin L.C., Chen N.H., Huang C.C., Yang C.T., Lu J.J. Clinical outcomes and molecular typing of heterogenous vancomycin-intermediate Staphylococcus aureus bacteremia in patients in intensive care units. BMC Infect Dis. 2015 Oct 23; 15 (1): 444.
  25. Viscidi R.P., Demma J.C. Genetic Diversity of Neisseria gonorrhoeae Housekeeping Genes. J Clin Microbiol 2003; 41: 197-204.
  26. Китаева Н.В., Фриго Н.В., Волков И.А., Лихарева В.В. Биомикрочипы и возможность их применения в дерматовенерологии. Вестн дерматол венерол 2009; 6: 33-45
  27. Poh C.L., Ocampo J.C., Loh G.K. 1992. Genetic relationships among Neisseria gonorrhoeae serovars analysed by multilocus enzyme electrophoresis. Epidemiol Infect 108: 31-38.
  28. De la Fuente L., Vazquez J.A. Multilocus enzyme analysis of African type penicillinase producing Neisseria gonorrhoeae (PPNG) strains isolated in Spain. Sex Transm Dis 1991; 18: 150-152.
  29. Gutjahr T.S., O'Rourke M., Ison C.A., Spratt B.G. Arginine-, hypoxanthine-, uracil-requiring isolates of Neisseria gonorrhoeae are a clonal lineage with a non-clonal population. Microbiology 1997; 143: 633-640.
  30. Ng L.K., Dillon J.R. Typing by serovar, anti-biogram, plasmid content, riboprobing, and isoenzyme typing to determine whether Neisseria gonorrhoeae isolates requiring proline, citrulline, and uracil for growth are clonal. J Clin Microbiol 1993; 31: 1555-1561.
  31. Selander R.K. et al. Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Appl Environ Microbiol 1986; 51: 873-884.
  32. Azariah S., Perkins N. Risk factors and characteristics of patients with gonorrhea presenting to Auckland Sexual Health Service, New Zealand. N Z Med J 2007; 120: U2491.
  33. Li H., Dillon J.R. Utility of ribotyping, restriction endonuclease analysis and pulsed field gel electrophoresis to discriminate between isolates of Neisseria gonorrhoeae of serovar 1A-2 which require arginine, hypoxanthine and uracil for growth. J Med Microbiol 1995; 43: 208-215.
  34. Poh C.L., Lau Q.C. Subtyping of Neisseria gonorrhoeae auxotype-serovar groups by pulsed-field gel electrophoresis. J Med Microbiol 1993; 38: 366-370. 133.
  35. Poh C.L., G.K. Loh, Tapsall J.W. Resolution of clonal subgroups among Neisseria gonorrhoeae IB-2 and IB-6 serovars by pulsedfield gel electrophoresis. Genitourin Med 1995; 71: 145-149.
  36. Unemo M. et al. 2007. Molecular characterization of Neisseria gonorrhoeae identifies transmission and resistance of one ciprofloxacin-resistant strain. APMIS 115: 231-241.
  37. van Looveren M. et al. Evaluation of the discriminatory power of typing methods for Neisseria gonorrhoeae. J Clin Microbiol 1999; 37: 2183-2188.
  38. Xia M., Whittington W.L., Holmes K.K., Plummer F.A. Roberts M.C. Pulsed-field gel electrophoresis for genomic analysis of Neisseria gonorrhoeae. J Infect Dis 1995; 171: 455-458.
  39. Sakda Sathirareuangchai, Peerayuht Phuangphung, Amornrut Leelaporn, Vitharon Boon-yasidhi. The usefulness of Neisseria gonorrhoeae strain typing by Pulse-Field Gel Electrophoresis (PFGE) and DNA detection as the forensic evidence in child sexual abuse cases: a case series Int J Legal Medi January 2015; 129 (1): 153-157.
  40. Khaki P. et al. 2009. Molecular typing of Neisseria gonorrhoeae isolates by Opa-typing and ribotyping in New Delhi, India. Int J Microbiol 2009: 934823.
  41. Chen H. et al. Typing of Neisseria gonorrhoeae Opa and NG-MAST gene of 12 pairs of sexual contact gonorrhea patients in China. J Huazhong Univ Sci Technolog Med Sci 2008; 28: 472-475.
  42. Morris S.R. et al. Strain typing and antimicrobial resistance of fluoroquinolone-resistant Neisseria gonorrhoeae causing a California infection outbreak. J Clin Microbiol 2009; 47: 2944-2949.
  43. Morris S.R. et al. Using strain typing to characterise a fluoroquinolone-resistant Neisseria gonorrhoeae transmission network in southern California Sex Transm Infect 2008; 84: 290-291.
  44. Trees D.L., Schultz A.J., Knapp J.S. Use of the neisserial lipoprotein (Lip) for subtyping Neisseria gonorrhoeae. J Clin Microbiol 2000; 38: 2914-2916.
  45. Carballo M., Ng L.-K., Dillon J.R. Detection of the tetM determinant in Neisseria gonorrhoeae using a non-radioactively labeled oligonucleotide probe. Mol Cell Probes 1994; 8: 205-208.
  46. Dillon J.R. Molecular epidemiology of antibiotic resistant Neisseria gonorrhoeae. Ann. Inst. Pasteur Actual. 1994; 5: 148-156.
  47. Dillon J.R., Pauze M. Relationship between plasmid content and auxotype in Neisseria gonorrhoeae isolates. Infect Immun 1981; 33: 625-628.
  48. Dillon J.R., Li H., Yeung K., Aman T.A. A PCR assay for discriminating Neisseria gonorrhoeae-lactamase-producing plasmids. Mol Cell Probes 1999; 13: 89-92.
  49. Dillon J.R., Carballo M., King S.D., Brathwaite A.R. Auxotype, plasmid content and serovars of gonococcal isolates (PPNG and non-PPNG) from Jamaica. Genitourin Med 1987; 63: 233-238.
  50. Dillon J.R., Pauze M., and Yeung K.-H. Molecular and epidemiological analysis of penicillinase producing strains of Neisseria gonorrhoeae isolated in Canada 1976-84: evolution of new auxotypes and beta-lactamase encoding plasmids. Genitourin Med 1986; 62: 151-157.
  51. Dillon J.R., Rahman M., Yeung K.-H. Discriminatory power of typing schemes based on Simpsons’s index of diversity for Neisseria gonorrhoeae. J Clin Microbiol 1993; 31: 2831-2833.
  52. Водопьянов А.С., Водопьянов С.О. и др. Системный анализ, математическое моделирование, информационные системы. Биотехнология 2001; 6: 85-88
  53. Heymans R., Golparian D., Bruisten S.M., Schouls L.M., Unemo M. Three N. gonorrhoeae genotyping methods provided similar cluster patterns for the large majority of isolates. J Clin Microbiol 2012; 50: 180-83.
  54. Diamandis E.P. Mass spectrometry as a diagnostic and a cancer biomarker discovery tool: opportunities and potential limitations. Mole Cell Proteomi 2004; 3 (4): 367-378.
  55. Сборник стандартных операционных процедур по определению молекулярно-генетических детерминант штаммов Neisseria gonorrhoeae М: ДЭКС-ПРЕСС 2008; 20
  56. Griffin T.J., Hall J.G., Prudent J.R., Smith L.M. Direct genetic analysis by matrix- assisted laser desorption/ionization mass spectrometry. Proc Natl Acad Sci USA. 1999 May 25; 96 (11): 6301-6.
  57. Li J., Butler J.M., Tan Y., Lin H., Royer S., Ohler L., Shaler T.A., Hunter J.M., Pollart D.J., Monforte J.A., Becker C.H. Single nucleotide polymorphism determination using primer extension and time-of-flight mass spectrometry. Electrophoresis 1999 Jun; 20 (6): 1258-65.
  58. Алексеева А.Е., Бруснигина Н.Ф. Возможности и перспективы применения методов массивного параллельного секвенирования в диагностике и эпидемиологическом надзоре за инфекционными заболеваниями. Медиаль (Аналитические обзоры) 2014 май; 2 ( 12).]
  59. Pareek C.S., Smoczynski R., Tretyn A. Sequencing technologies and genome sequencing. J Appl Genetics 2011; 52 (4): 413-435.
  60. Moorthie S., Mattocks C.J., Wright C.F. Review of massively parallel DNA sequencing technologies. Hugo J 2011; 5: 1-12.
  61. Zhang J., Chiodini R., Badr A. et al. The impact of next-generation sequencing on genomics. J Genet Genomics 2011; 38 (3): 95-109.
  62. Pettersson E., Lundeberg J., Ahmadian A. Generations of sequencing technologies. Genomics 2009; 93 (2): 105-111.
  63. Enrico Lavezzo, Stefano Toppo, Elisa Franchin, Darbara Di Camillo? Francesca Finotello, Marco Falda, Riccardo Manganelli, Giorgio Palu and Luisa Barzon. Genomic comparative analysis and gene function prediction in infectious diseases: application to the investigation of a meningitidis outbreak/ BMC Infectious Diseaes 2013, 13: 554.

Copyright (c) 2015 Shpilevaya M.V., Obraztsova O.A., Chestkov A.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 60448 от 30.12.2014.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies